© Copyright Statement

All rights reserved. All material in this document is, unless otherwise stated, the property of **FPC International, Inc**. Copyright and other intellectual property laws protect these materials. Reproduction or retransmission of the materials, in whole or in part, in any manner, without the prior written consent of the copyright holder, is a violation of copyright law.

FPC FUEL CATALYST LOADBOX TEST OF NORMALLY ASPIRATED LOCOMOTIVE ENGINES USING THE CARBON MASS BALANCE METHOD FOR DETERMINING FUEL CONSUMPTION BY WISCONSIN CENTRAL TRANSPORTATION

Report prepared by UHI Corporation, Provo, Utah Lakeside Oil Company, Milwaukee, WI FPC Great Lakes, Manitowoc, WI

August 19, 1996

<u>CON</u>	TENTS		Page
Conte	ents		(ii)
Abstr	act		(iii)
1.0	INTR	RODUCTION	4
2.0	BAC	KGROUND	5
	2.1	Diesel Engine Combustion Theory	5
		2.1.1 The Combustion Process	5
		2.1.2 The Delay Period	5
		2.1.3 The Period of Rapid Combustion	6
		2.1.4 The Third Phase of Combustion	6
		2.1.5 The Final Phase of Combustion	6
		2.1.6 The Ideal Combustion Process	7
		2.1.7 The Effects of Operating Conditions on Combustion	7
	2.2	Possible Mode of Action of the FPC Combustion Catalyst	7
		2.2.1 Flame Propagation	7
3.0	TEST	TING	8
	3.1	The AAR RP-503	8
	3.2	The WAIT Study	9
		3.2.1 Conclusions of the WAIT Study	12
	3.3	Specific Fuel Consumption Trials of Diesel Generators	12
		3.3.1 Diesel Generator Test Method	12
		3.3.2 Conclusions for the Specific Fuel Consumption	

i

			Gener	ator Trials	13
	3.4	The W	Viscons	in Central Multiple Engine Loadbox Test	13
		3.4.1	Test N	fethodology	14
		3.4.2	Corre	ction for Fuel Density	14
		3.4.3	Corre	ction for Barometric Pressure	15
		3.4.4	Discu	ssion of Smoke Density	15
		3.4.5	Discu	ssion of Anomalies	
4.0	CONO	CLUSIC	ONS		16
5.0	RECO	OMME	NDAT	IONS	17
6.0	REFE	RENC	ES		18
7.0	APPE	NDIX	1	The WAIT Study	19
8.0	APPE	NDIX 2	2	Varimax Variable Compression Test & Research Rig	20
9.0	APPE	NDIX (3	Computer Printouts of Engine Data	<mark>2</mark> 1
10.0	APPE	NDIX 4	4	Carbon Mass Balance Formulae	22
11.0	APPE	NDIX :	5	Dr. G. J. Germane's Resume'	23
12.0	APPE	NDIX	6	Barometric Pressure Readings	
13.0	APPE	NDIX '	7	Fuel Consumption Comparisons Smoke Spot Number Comparisons	25

Abstract

This report documents the effect of Fuel Performance Catalyst (FPC), a combustion catalyst, upon engine efficiency, exhaust smoke, exhaust sparking and carbon buildup when used in normally aspirated (roots blown), EMD engines. The subject of this paper is a loadbox test conducted by Wisconsin Central Transportation on four locomotive engines ($2 \times SW 1500$, and $2 \times GP35$) with and without FPC. Test engines were run under full load at throttle settings 2, 4, 6, and 8. The results were as follows:

(1) Fuel consumption was reduced 4% to 8%, depending upon throttle setting. The switcher test fleet averaged a 7.53% reduction in fuel consumed with FPC treatment. The GP35 test fleet averaged a 5.55% reduction in fuel consumption.

(2) Exhaust smoke density was reduced 6% to 50%. Smoke density reductions averaged 24.8% in the switcher test fleet, and 17.8% in the GP35 test fleet. Exhaust gases were visibly cleaner.

(3) Exhaust "sparking" and carbon buildup in spark arresters were greatly reduced, evidence of cleaner, more complete combustion, and even greater cost savings through reduced maintenance and increased engine life. Further cost reductions and improved public image through reduced trackside fires and visible pollution reduction are another benefit of FPC fuel treatment.

These benefits are supported by dozens of laboratory tests, including the Southwest Research Institute's (SwRI) test using the Association of American Railroads, Recommended Practice 503 (RP-503). Test results reviewed in this report are those from SwRI, the Western Australia Institute of Technology (WAIT) and several genset operations where specific fuel consumption tests have been possible. These studies verify FPC is most effective when used in engines operating in field applications under transient conditions.

The findings of the Wisconsin Central test of the FPC catalyst agree with the above studies, and with others conducted by several railroads. The Wisconsin Central test is the fourth field study with locomotive engines comparing engine performance and emissions from several identical engines with and without FPC catalyst treated fuel.

1.0 **INTRODUCTION**

During the period of May 1992 to June 1992 an extensive test program was successfully completed at Southwest Research Institute (SwRI), San Antonio, Texas. The test program determined the effect of a fuel combustion catalyst (designated FPC-1[®]) upon fuel properties, engine wear, deposit formation, and engine performance. The test procedure conducted by SwRI was the Recommended Practice 503 (RP-503), a procedure authored and recognized by the Association of American Railroads (AAR).

The final phase of the RP-503 is a engine performance test on a full-sized, twelve cylinder, 645E3B EMD locomotive engine. The test engine was operated under steady-state conditions and at maximum horsepower output per unit of fuel consumed (optimum brake specific fuel consumption). Brake specific fuel consumption (bsfc) was reduced 1.74% over baseline diesel fuel when consuming diesel fuel treated with FPC catalyst under these engine conditions [Ref 1].

Combustion experts concluded that the 1.74% improvement in bsfc (improved fuel economy) would translate to improvements several times greater in engines operated in the field due to the transient nature of field operating conditions [Ref 6].

Other independent laboratory studies, such as the Varimax engine test conducted by the Western Australia Institute of Technology (WAIT) confirm this conclusion. Tests at varying engine speeds, loads, and injection timing agree with expert opinion. The WAIT test revealed FPC catalyst treated fuel produced greater improvements in bsfc as engine operating conditions deviated from best power and bsfc. Although the WAIT engine was tested under steady-state conditions at each rpm, load, and injection timing, the test conditions more closely reproduced field conditions than do steady-state engine testing [Ref 2].

Further, test data from over a dozen specific fuel consumption (sfc) trials of diesel power generating equipment, agree with the WAIT study. Diesel generators, although not subjected to as severe of conditions as engines in mobile equipment, can be tested in the field at specific loads and rpm. It is also reasonably simple to accurately measure fuel consumption and power output in kilowatts [Ref 3].

The results of the RP-503, WAIT, and stationary genset tests have verified the addition of FPC catalyst to diesel fuel, creates significant fuel savings in high horsepower, medium-speed diesel engines. These also verify greater benefit with catalyst treatment of engines used in more transient applications.

The principle subject of this paper is a loadbox test conducted by Wisconsin Central Transportation (WCRR) undertook to determine the effect of FPC catalyst (FPC-2 1/10,000 ratio was used) upon fuel economy and emissions in a fleet of four EMD powered locomotives ($2 \times SW1500$ and $2 \times GP35$). Several throttle notch positions were selected for the test, and the engine fully loaded in an attempt to create engine conditions most like those experienced under actual operation. The results agree with those obtained in previous field tests, the SwRI study, and support expert opinion about FPC catalyst.

2.0 BACKGROUND

2.1 <u>Diesel Combustion Theory</u>

2.1.1 <u>The Combustion Process</u>

The four-cycle compression-ignition engine employs the conventional four strokes per power cycle of intake, compression, power, and exhaust. The two-cycle engine shortens the number of strokes of the piston by combining the power and exhaust stroke, and the intake and compression stroke.

The air inducted on the intake is either normally aspirated or forced in by the supercharger, while the fuel is injected into the cylinder near the end of the compression stroke. In most diesel engines, the combustion chamber temperature at the end of the compression stroke is approximately 600 degrees C (Celsius). This temperature is dependent upon the compression ratio and the initial air temperature.

Near the end of the compression stroke, fuel is sprayed into the combustion chamber at pressures varying from about 1,200 psi to over 30,000 psi. The injection pressure is governed by engine speed and size, and by the type of combustion chamber and injection system used [Ref 4].

With the commencement of fuel injection, the combustion process is initiated. Each charge of injected fuel experiences several phases in the reaction as follows:

(1) An ignition delay period

(2) A period of rapid combustion

(3) A period of combustion where the remainder of the fuel charge is burned as it is injected.

(4) An after burning period in which the unburned fuel may find oxygen and burn, often times referred to as the tail of combustion.

In following the combustion process and the path of fuel particles, it should be understood that after ignition has occurred, many of these steps will be proceeding at the same time, since the mixture is homogeneous [Ref 5].

2.1.2 The Delay Period

The delay consists of a physical and a chemical delay. The physical delay is required to atomize the fuel, mix it with air, vaporize it, and produce a mixture of fuel vapor and air.

During the chemical delay, preflame oxidation reactions occur in localized regions with temperature increases of 540 to 1100 degrees C. These preflame reactions are initiated by the catalytic effect of wall surfaces, high temperatures, and miscellaneous particles that form the active chain carriers prior to rapid combustion. As the local temperature increases, the fuel vapors begin to crack at an accelerating rate and produce material with high percentages of carbon which become heated to incandescence as local ignition is initiated.

Inflammation develops quickly either by rapid and complete oxidation of the fuel and air or the oxidation of the intermediate products of the chain reactions of the fuel [Ref 5].

2.1.3 <u>The Period of Rapid Combustion</u>

Combustion during the period of rapid combustion is due chiefly to the burning of fuel that has had time to vaporize and mix with air during the delay period. The rate and extent of the burning during this period are closely associated with the length of the delay period and its relation to the injection process.

The relation of the delay on both the rate and extent of pressure rise during this phase, is especially strong when the delay period is shorter than the injection period [Ref 5].

2.1.4 <u>The Third Phase of Combustion</u>

The third phase is the period from maximum pressure to the point where combustion is measurably complete.

When the delay period is longer than the injection period, the third period of combustion will involve only the fuel which has not found the necessary oxygen during the period of rapid combustion. In this case, the combustion rate is limited only by the mixing process. However, even when all the fuel is injected before the end of the delay period, poor injection characteristics can extend the third period well into the power or expansion stroke, causing low output and poor efficiency.

When injection timing is such that the second phase of combustion is complete before the end of injection, some portion of the fuel is injected during the third phase, and the rate of burning will be influenced by the rate of injection, as well as by the mixing rate [Ref 4].

2.1.5 <u>The Final Phase of Combustion</u>

The final phase or tail of combustion continues after the third phase at a diminishing rate as any remaining fuel and oxygen are each consumed. This last stage, and the previous one are characterized by diffusion combustion, with production and combustion of carbon particles and a high rate of heat transfer radiation. This phase occurs well down the expansion stroke, when much of the oxygen has been consumed and combustion temperatures are lower. It is at this stage that smoke and carbon monoxide emissions are formed [Ref 4].

2.1.6 The Ideal Combustion Process

The thermal efficiency of an internal combustion engine, whether spark or compression-ignition, will increase if the combustion time is reduced. Mean effective pressure will be higher, and thus more work can be extracted from the same energy input from combustion. The rate of pressure rise during the period of rapid combustion corresponding to constant volume combustion, should be as rapid as possible without exceeding a certain value.

The fuel remaining after the period of rapid pressure rise should be burned at a rate such as to hold the cylinder pressure constant, at the maximum allowable value, until all the fuel is burned.

2.1.7 The Effects of Operating Conditions on Combustion

With respect to the diesel engine, the combustion rate as well as the rate and extent of pressure rise, depends greatly on the design of the combustion chamber and the injection system. However, injection timing, engine speed, turbulence, compression ratio, fuel-air ratio, spray characteristics, fuel cetane number, and inlet temperature and pressure all effect the combustion rate or flame speed.

A detailed discussion of the impact of these operating conditions on combustion is found in Reference 4.

- 2.2 Possible Mode of Action of the FPC Combustion Catalyst
- 2.2.1 Flame Propagation

As previously mentioned, the speed with which the combustion process takes place influences the efficiency of the heat released by the chemical reaction. With greater rates of heat release, it is often possible to transfer more of the heat into useful energy.

The combustion catalyst manufactured by UHI Corporation and distributed by FPC Technology, Inc., is a burn rate modifier dissolved in a solvent carrier. When the combustion catalyst is introduced into a liquid hydrocarbon fuel and combustion begins, the catalyst appears to form propagating centers that initiate multiple flame fronts. These propagating centers in effect increase the thermal conductivity of the fuel-air mixture, since heat transmission through it is more rapid with their presence.

Once combustion has been initiated, it is likely that the iron salt thermally decomposes into ions. The iron ions will promote the formation of free hydrocarbon radicals for the combustion process, due to their electron configuration. Other portions of the molecular aggregate, also form ions providing additional free radicals for the combustion process, as well as, providing kinetic energy to local fuel molecules in excess of their normal activation energy.

If the activation energy of the fuel-air mixture can be decreased, the reaction rate will tend to increase. Similarly, if the concentration of reacting substances and the collision frequency of the molecules can be increased, the reaction rate will increase.

Therefore, the thermal efficiency of an internal combustion engine will increase, if the combustion time is decreased. A shorter combustion time implies greater flame speed. Thus, if a proposed combustion catalyst is to be of any benefit in terms of improving horsepower output and/or decreasing fuel consumption, it must increase flame speed or assist in maintaining flame speed through the third and last phases of combustion.

The completeness of combustion may also be positively affected. If combustion is more complete, more energy is liberated while the flame front traverses through the fuel-air mixture. Controlled engine tests with FPC catalyst reveal not only increased horsepower output and reduced fuel consumption, but typically reduced unwanted gas and particulate exhaust emissions.

Further, when engine operating conditions are such that flame speed is slowed, creating greater combustion time losses, the FPC fuel catalyst will recover a greater percentage of those losses. Thus,

the catalyst will have a more profound effect upon engines operating in the field, than engines operating in the laboratory.

3.0 **TESTING**

3.1 <u>The AAR RP-503</u>

In early 1992, UHI Corporation was encouraged by several major railroads to conduct tests with FPC catalyst (FPC-1[®] 1/5000 ratio was used) at Southwest Research Institute (SwRI) using the Association of American Railroads (AAR), the Recommended Practice 503 (RP-503).

The RP-503 constitutes two screening tests and an engine performance trial. The screening tests include the determination of an additives effect upon fuel properties, engine deposit formation, and engine wear. The final procedure is an engine performance trial conducted in a 12 cylinder, 645E3B EMD locomotive engine.

These studies concluded that FPC catalyst had no measurable effect on the chemical properties of the fuel, nor did it detrimentally impact engine life and deposit formation. The EMD engine also showed a 1.74% improvement in bsfc at a 95% confidence level with FPC catalyst treated fuel [Ref 1].

This is a remarkable improvement given the existing efficiency of this particular engine (37.2% brake thermal efficiency and 0.354 bsfc) and the fact the test engine was run under optimum engine conditions (steady-state, notch 8, 900 rpm). Under these conditions, injection timing is the best match for maximum horsepower and lowest bsfc, and therefore, combustion time losses are minimized. Further, the engine was in like-new condition, and smoke emissions were nil.

These engine test conditions are specified by the AAR since a typical locomotive engine operates 50 to 60% of the time at notch 8. However, the steady-state, maximum horsepower operating conditions tend to minimize the potential for horsepower and bsfc gains [Ref 6].

3.2 The WAIT Study

Studies by the Western Australian Institute of Technology (WAIT) have collected considerable data demonstrating the effect of the FPC catalyst on engine efficiency while operating at varying rpm, load, and injection timing. The test was designed to best illustrate the effects of the combustion catalyst. In addition, the test conditions were meant to relate the effect of the catalyst, to the most commonly altered settings and conditions encountered, during normal field operation of a heavy-duty compression-ignition engine.

The objective of the WAIT study was to analyze the effect of the combustion catalyst on engine brake power and brake specific fuel consumption. In order to considerably broaden the scope of the test program in terms of relevance to simulating true commercial and industrial operating conditions, the following parameters were introduced to be varied accordingly:

- (1) Engine speed
- (2) Throttle setting

(3) Fuel Injection Timing

(4) The concentration of the catalyst in the diesel fuel

The manner in which each parameter was altered is described below:

* Engine speed in all tests was varied from 1600 rpm to 2400 rpm by increments of 200 rpm.

* Throttle settings were altered alternatively from half throttle to full throttle in the majority of the tests.

* Fuel injection timing was varied from 18 degrees before top dead center (BTDC) to 42 degrees BTDC, in increments of 6 degrees, in specific tests. The standard injection timing was 30 degrees BTDC.

* The concentration of the catalyst in the diesel fuel was altered by employing three different mixing ratios.

* Engine base parameters which were held constant during the entire test program were compression ratio, and valve timing. The compression ratio was 18:1. Valve timing was set to the engine manufacturers' recommended values for diesel as is listed below:

INTAKE VALVE	OPENS 10.8 degrees BTDC
	CLOSES 42.6 degrees ABDC
EXHAUST VALVE	OPENS 7.6 degrees BBDC
	CLOSES 21.6 degrees ATDC
VALVE OVERLAP	= 32.4 degrees

Baseline tests using untreated fuel were conducted at the beginning, middle, and end of the test program to check whether any drift in the engine performance had occurred, due to the introduction of the combustion catalyst [Ref 2].

For all tests conducted in the Varimax engine test program at WAIT, full details of which parameters were altered in each particular test are given on each page of tabulated results in APPENDIX 1.0 (The WAIT Study).

3.2.1 Conclusions for the WAIT Study

The Varimax engine test program has shown quite convincingly the benefits of FPC catalyst in diesel fuel. At the highest catalyst concentration in the fuel, bsfc improvements ranged from 1.71% to 4.99%, with an average improvement of 4.19% at half throttle and low torque, 3.04% at full throttle and high torque, and 2.61% at full throttle and 2400 rpm while varying injection timing from 42 degrees BTDC to 18 degrees BTDC.

3.3 SPECIFIC FUEL CONSUMPTION TRIALS OF DIESEL GENERATORS

For over ten years, the FPC combustion catalyst has been subjected to field trials by dozens of professional engineers representing the interest of the company by whom they are employed. These trials have involved all types of engines under virtually every operating condition imaginable. Generally speaking, these field trials reveal FPC catalyst has greater effect upon engines in mobile equipment than stationary equipment, and high speed engines than medium or low speed engines. These data support the laboratory data mentioned above, and the theory that the catalyst affects flame speed [Ref 3].

For the purposes of this paper, although still much like laboratory engines, only the details of specific fuel consumption studies in diesel generators (gensets) will be given. These tend to be the best controlled field tests available, and the only tests where the measurement of specific fuel consumption (kilowatts/liter) are practical.

3.3.1 Diesel Generator Test Method

Typically, the genset is operated under steady-state conditions and fixed load on baseline fuel while the rate of fuel consumption (liters or gallons) and the power output (kilowatts) are measured. Once a reliable database has been accumulated, the fuel for the gensets is treated with FPC catalyst and the gensets operated as normal from three to five hundred hours. This is known as the preconditioning period, and is allowed due to the considerable data that indicates the catalyst first functions to remove existing engine carbon residue, therefore delaying the achievement of maximum catalyst effectiveness.

Once the engine preconditioning period is completed, the gensets are again tested. The procedure, engine speed, and load are reproduced, with the only deviation being the baseline fuel is now treated with FPC catalyst.

All parameters affecting engine efficiency (intake air temperature, intake pressure, fuel density) are measured and corrections to power output and fuel consumption made.

Some fourteen stationary diesel gensets have been tested in this manner. Engines tested include the following makes:

- (1) Blackstone EL8
- (2) Caterpillar 3412
- (3) Cummins VTA28G3
- (4) Detroit 12V and 16V149
- (5) EMD L20/645F4B
- (6) Mirrlee K8 Major

- (7) Ruston
- (8) English Electric
- 3.3.2 <u>Conclusions for the Specific Fuel Consumption Trials of the Diesel</u> <u>Generators</u>

Improvements in specific fuel consumption range from 3.1 to 4.8%, with an average for the entire sample of 3.7%. Reductions in smoke density average 23% for all gensets tested [Ref 3].

3.4 The Wisconsin Central Loadbox Test of Four Roots Blown Engines

Wisconsin Central Transportation conducted studies to determine the effect of FPC-2 on fuel economy and smoke emissions in a fleet of SW1500 and GP35 locomotives. The test also involved long term observation of the claimed "cleaning up" ability of the catalyst. The four test locomotives are powered by either 12 cylinder or 16 cylinder EMD engines. All four engines are normally aspirated (roots blown).

A loadbox was employed to load (full load) the engines. Fuel consumption was measured using both a weigh scale method and an exhaust gas analysis method also utilized by the US-EPA, known as the carbon mass balance (cmb). A Bacharach Smokespot Method was used to determine changes in exhaust smoke density.

All locomotives were tested for fuel consumption using the cmb method. The GP35s were tested at notch settings 2, 4, 6, and 8. The SW1500s were tested at notches 2, 4, and 6. All engines were run at full load at each notch setting.

Also, smoke density readings were taken at idle, 2, 4, 6, and 8 (GP35s) or idle, 2, 4, and 6 (SW1500s), also while at full load.

Units 4009 (GP35) and 1550 (SW1500) were tested using a second method which employed a weigh scale. This procedure was developed by Wisconsin Central to determine the fuel consumption of their engines. The weigh scale method and results will be treated in a separate report.

The locomotives were first tested while using untreated (baseline) number 2 diesel fuel. After the baseline tests, the fuel for the four test locomotives were treated with FPC-2 for approximately eight weeks. At the end of the eight week engine preconditioning period, the cmb and weigh scale tests were repeated at identical load and notch settings. Engine rpm and rack length were also reproduced.

3.4.1 <u>Test Methodology</u>

The test methodology for determining changes in fuel consumption was the "Carbon Mass Balance" (cmb). The cmb method measures the carbon containing products of the combustion process (CO2, CO, HC) found in the exhaust, rather than directly measuring fuel flow into the engine. The CMB also makes possible the determination of FPC catalyst's effect upon regulated emissions, specifically smoke for the diesel engine.

The cmb uses state-of-the-art, non-dispersive infrared analysis (NDIR) and the measurement of carbon containing exhaust gases to determine fuel consumption indirectly. The method has been central to the EPA Federal Test Procedures (FTP) and Highway Fuel Economy Test (HFET) since 1974, and is internationally recognized. This method has proven to be at least as accurate as more conventional flowmeter or weigh scale methods [Ref 8].

The test was supervised by technical representatives for Wisconsin Central. The exhaust gas data collected during the baseline and treated fuel carbon balance tests are summarized on the attached computer printouts (Appendix 3). From these data, the volume fraction (VF) of each gas is determined and the average molecular weight (Mwt) of the exhaust gases computed. Next, the engine performance factor (pf) or the carbon mass in the exhaust is computed. The pf is finally corrected for exhaust temperature and pressure velocity (exhaust density), intake air pressure (barometric) and fuel density, yielding an engine performance factor (PF) or carbon mass flow rate corrected for total exhaust mass flow and fuel energy content.

The PFs are shown on the bottom of the computer printouts found in Appendix 3. The PF relates to the length of time required to consume a given volume of fuel, therefore a positive change in PF equates to a reduction in fuel consumption (longer time to consume same amount of fuel at the same load). The cmb formula and legend are found on Figure 1 under Appendix 4. A sample calculation is found on Figure 2, also under Appendix 4 (CMB Formulae).

These formulae were provided for UHI by Dr. Geoffrey J. Germane, Ph.D. Mechanical Engineering, and former Department Chair at Brigham Young University, as the technical approach for the cmb. Dr. Germane's resume is also included in Appendix 5 (Dr. G. J. Germane's Resume').

3.4.2 <u>Correction for Fuel Density</u>

Dr. Germane's formulae assume a fuel density of 0.82 (reference specific gravity for diesel). UHI engineers measure fuel specific gravity (density) by taking samples from the rolling tank on each locomotive. Only the treated fuel rate of fuel consumption or PF (PF2) is corrected for changes in fuel density (energy content). The baseline fuel density is used as the reference. The correction factor (if applicable) for fuel density is made to the treated fuel and shown on the treated fuel computer printouts (Appendix 3 Raw Data Computer Printouts).

3.4.3 <u>Correction for Barometric Pressure.</u>

The barometric pressure is used in the calculation of both the baseline and treated fuel PFs. These pressure readings were obtained from the National Weather Service for the Stevens Point area. The barometric pressures are shown on the computer printouts.

3.4.4 Discussion of Smoke Density

Smoke is a product of incomplete combustion, and as such, is a measure of engine efficiency. Smoke is simply unburned fuel droplets that are exhaust from the engine. Generally speaking, these particles are formed during the late stages of combustion when temperatures have fallen off and oxygen availability is limited. The FPC catalyst improves the oxidation of these fuel droplets, speeding flame front development and extracting more useful energy before the exhaust valve or port opens. More

power is generated and smoke emissions are reduced.

Smoke measurements from the engines tested during the baseline and treated fuel tests were collected using the Bacharach Smokespot Method. The Bacharach method draws a specific volume of exhaust gas through a standard 5 micron filter medium. The particulate in the exhaust gas sample collects on the surface of the filter medium. The surface is darkened by the particulate according to the density of the particulate in the exhaust sample. The greater the particulate density, the darker the color. The Bacharach smoke scale ranges from 0 to 9, with 0 being a white, particulate free filter, and 9 being a completely black filter.

The smoke spot numbers are relative smoke density numbers for each engine tested and can be used to determine any change in smoke emissions when compared to FPC catalyst treated fuel. A comparison of the baseline and treated Smoke Numbers (shown on Table 2, Appendix 7) indicate the use of FPC catalyst in the Wisconsin Central locomotives created as much as a 50% reduction in smoke density. Smoke reductions were greater at lower notch settings.

The reduced engine smoking leads to less carbon or soot accumulation on stacks, spark arresters, turbochargers (were applicable), and other critical engine components. Less engine smoke also equates to fewer and smaller soot particles exhausting from the engine. The smaller particles have less mass and therefore, carry less heat, burning out before reaching combustion materials near the tracks. Engine component life and efficiency is also maintained much longer.

3.4.5 Discussion of Anomalies

The results of the cmb test are consistent, and agree with other tests from previous railroad tests. The pattern of change also agrees with tests done by Southwest Research Institute on a MP15 locomotive. These tests show the 645 EMD is most efficient in the middle notch settings (4-7), with efficiency declining at the terminal notch settings.

There were two anomalies in the fourteen tests of the four locomotives. The first appeared at notch 2 on the 4009. Here a 17% change in fuel consumption was observed. This is an obvious anomaly, being over three times greater than the average of the remaining three tests conducted on the 4009.

The second anomaly appears in the test results for the 4006. At notch 8, the 4006 saw a 10.9% reduction in fuel consumption. In this case, the problem appears to be the result of a erroneous exhaust pressure velocity reading. Apparently the actual reading was 9.3 inches of water during the treated test, and not the 9.0 that was recorded. If correct, the change in pressure from 9.0 to 9.3 would correct the PF downward to approximately 7.3%, a percentage change that is more in line with the other test results on the 4006.

The anomalies have been removed from the test sample and are not used in the conclusions for this report.

4.0 <u>CONCLUSIONS</u>

(1) As concluded by Southwest Research, under ideal engine conditions, (best power timing, engine speed, load, and at steady-state) the use of FPC catalyst in a locomotive and/or any other medium speed diesel engine will generate a significant fuel economy improvement of no less than 1.74%.

(2) Tests conducted by another independent laboratory, the Western Australia Institute of Technology (WAIT), on a Varimax engine operated at varying rpm, injection timing, and load verify that 1.74% is a minimum, and that average fuel economy improvements under more transient conditions typically experienced in the field will be several times greater.

(3) The same WAIT study determined that fuel economy gain is increased with increasing catalyst concentration and with engine operation deviating from best power parameters, supporting the theory of the catalyst mode of action.

(4) Although engine operating conditions are less severe for stationary engines than for mobile equipment, specific fuel consumption tests in over a dozen stationary heavy duty diesel generator sets operating in the field confirm the WAIT findings. The addition of FPC catalyst to standard diesel fuel improved fuel economy approximately 3.7% in these studies.

(5) Actual field trials in Wisconsin Central's fleet of four roots blown 645E EMD powered locomotives agree with the above conclusions. Fuel consumption was reduced 4% to 8% with FPC catalyst fuel treatment. Additional benefits include reduced engine smoking, exhaust sparks, and carbon or soot buildup.

(6) These data agree with the conclusions rendered by Dr. Geoffrey J. Germane, Ph.D., Mechanical Engineering and Chairman of the Department of Mechanical Engineering, Brigham Young University, in a letter to Mr. Vernon Markworth, Principal Engineer, Design and Development, Department of Engine Research, Southwest Research Institute, 6 August 1992 [Ref 6].

Other combustion experts, such as Dr. G. K. Sharma, Senior Research Manager, Indian Oil Corporation, with whom the writer of this paper has discussed FPC catalyst benefits, also agree [Ref 7].

5.0 **<u>RECOMMENDATIONS</u>**

Given the considerable independent laboratory and field data collected verifying the potential for fuel savings by treating diesel fuel with FPC-2, a large fuel consumer can realize a significant net fuel cost savings with FPC-2 fuel treatment. The data document actual fuel savings, after FPC-2 fuel treatment under transient engine operating conditions, will be two to three times or more than the RP-503 results. Combustion experts agree with the comparison between the results of the RP-503 and results seen in engines operated in the field.

Wisconsin Central Transportation can expect to experience fuel savings of approximately 6.5% to 7% with FPC-2 fuel treatment. Exact dollar savings will depend upon the cost and volume of fuel used

by Wisconsin Central, and the work regime of the engines. Therefore, UHI and Lakeside Oil recommend Wisconsin Central commence fuel treatment with FPC-2 as soon as possible, and begin now to recover the losses being sustained from consuming untreated fuel.

It is also recommended that, upon system wide fuel treatment, a program be initiated to determine the impact of FPC-2 upon long term engine maintenance and engine life. UHI recommends analysis of oil to determine the impact of FPC-2 upon oil viscosity and wear metals. Oil analysis and engine examination have proven the use of FPC catalyst improves lubricant life, reduces engine wear metals (iron and copper), and reduces carbon residue related maintenance and engine failures, particularly pertaining to valves, injectors, ring zone areas, and bearings. Field studies have also documented engine smoking and stack fires are reduced after FPC catalyst fuel treatment.

6.0 **<u>REFERENCES</u>**

1. Evaluation of a Fuel Additive, Final Report, Volume I, SwRI Project No. 03-4810 by Markworth

2. Performance Evaluation of a Ferrous Salt Combustion Catalyst Applied to Diesel Fuel by Guld

3. Ten Years of Testing by Platt

4. The Internal-Combustion Engine in Theory and Practice, Volume I by Taylor

5. The Internal-Combustion Engine in Theory and Practice, Volume II by Taylor

6. Letter to Mr. Vernon Markworth, Principal Engineer, Design and Development, Department of Engine Research, SwRI, from Dr. Geoffrey J. Germane, Chairman, Department Mechanical Engineering, Brigham Young University

7. Meeting with Dr. G. K. Sharma, Senior Research Manager, Indian Oil Co. and Mr. S. Craig Flinders, VP, Tech Services, UHI Corporation, 2 June 1994.

8. SAE PAPER, 75302; by Bruce Simpson, Ford Motor Company.

7.0 **<u>APPENDIX 1</u>**

THE "WAIT" STUDY

1

Comparison of Test Data From The W.A.I.T. Study

Table 1. Change in BSFC (kg/kW hr) at Full Throttle, High Torque

	RPM	Base BSFC	FPC-1 BSFC	% Change
	1600	0.399	0.389	- 2.51
	1800	0.406	0.398	- 1.97
	2000	0.417	0.405	- 2.88
	2200	0.437	0.420	- 3.89
	2400	0.475	0.460	- 3.16
Avera	GO 1	0.427	0.414	- 3.04
Avera	96:	0.427	0.414	- 3.04

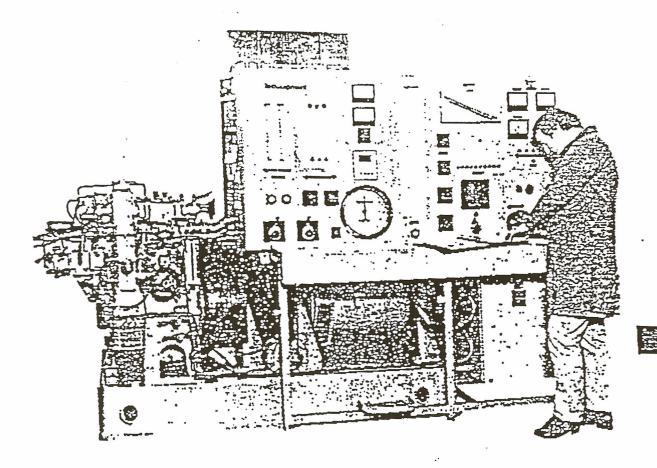
Table 2. Change in BSFC (kg/kW hr) at Half Throttle, Low Torque

	RPM	Base BSFC	FPC-1 BSFC	<u>% Change</u>
	1600	0.441	0.419	- 4.99
	1800	0.441	0.421	- 4.54
	2000	0.452	0.437	- 3.32
	2200	0.500	0.481	- 3.80
	2400	0.552	0.530	- 4.50
_				
Avera	ge:	0.477	0.457	- 4.19

Comparison of Test Data From The W.A.I.T. Study

.

Table 3. Change in BSFC (kg/kW hr) at Full Throttle, 2400 RPM at Optimum Mixing Ratio


BI	<u>FDC</u>	Base BSFC	FPC-1 BSFC	olo	Change
42	2 deg	0.448	0.440	-	1.79
36	6 deg	0.442	0.434	-	1.81
30	0 deg	0.469	0.461	-	1.71
24	4 deg	0.506	0.490	-	3.16
18	8 deg	0.630	0.608	-	3.49
Average	:	0.499	0.486	_	2.61

8.0 **<u>APPENDIX 2</u>**

VARIMAX VARIABLE COMPARISON TEST & RESEARCH RIG

,

TD35 Varimax Test and Research Engine Rig

Features

Designed specially for teaching and research purposes

Simultaneous study of dynamics and thermodynamics of the internal combustion engine A robust engine with advanced and unique features

Variable Compression Ratio 4,5:1 to 20:1 whilst engine is running

Petrol/diesel operation with minimal changeover time

Valve timing and opening period adjustable whilst the engine is running

Strain gauged crankshaft suspension system allows analysis of gas and dynamic forces Transducers indicate cylinder pressure, diesel fuel line pressure, injector needle lift, and flywheel cyclic variations Mixture strength can be controlled manually with different carburettor chokes supplied Diesel injection timing may be varied Spark timing may be varied

Mass of the flywheel can be altered by Inertia ring addition

Basic engine, dynamometer motor, and electrical loading unit designed to accept supercharging

Fully Integrated test rig complete with instrumentation

Separate cooling circuits for cylinder head and cylinder lacket

Package units for supercharging, petrol injection and operation on natural gas and LPG fuel are available as optional extras

Description

The Varimax Engine Test Rig was besioned and oeverched specially as a teaching unit and for the evaluation of the effects on engine performance of certain fundamental variables. This makes it an invaluable tool for research workers, university lecturers and students.

The engine is a four-stroke, vertical single cylinder, water cooled digsel/petrol unit, nominally rated at 7.6kW (10bhp) with speed variation between 500 and 3000rev/min. The compression ratio can be adjusted between 4.5:1 and 20:1 by raising or lowering the complete crankshaft assembly which is carried in a cradle pivoted on an axis parallel with the crankshaft. Suspend on members for carrying this cradle project through the crankcase to anchor points. These members have prepared surfaces to which are attached strain gauges for determining the venical and horizontal components of the forces acting on the main bearings.

The cast iron cylinder head houses overhead camshafts which are chain driven from the crankshaft. A compensating linkage ensures that there is no phase shift of the camshafts as the crankshaft is raised and lowered.

It is possible to vary the timing and the period for both inlet and exhaust valves whilst the engine is running. These variables are quite independent of each other. Alternatively the valve mechanism may be locked at set values.

The cylinder head is provided with three similar apertures suitable for receiving sparking plugs or pressure transducers, or a fuel injector when operating as a compression ignition engine.

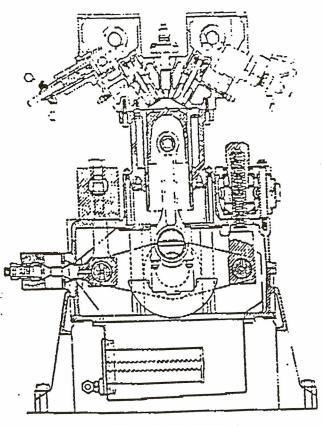
The aluminium piston has one oil scraper and three compression rings.

Ignition is by means of a magneto, driven from one of the half-speed drives. Spark timing is fully adjustable.

A separate cold water make up supply to the mixing tank enables temperatures across the engine to be stabilized during test.

A limit switch short circuits the magneto at compression ratios in excess of 13:1 and, in the event of the engine overspeeding, actuates a solenoid to automatically cut off the fuel supply when running as a dieset engine.

The normal carburettor fitted is a down-draught type supplied with a variety of chokes and an adjustable metering jet.


A motor driven pump circulates cooling water through the cylinder head and the cylinder liner jacket, as two separate systems. The flow through each system can be controlled independently and measured.

Clampton, campour and cradie beautic, are all pressure lubrication from a motor driven oil pump. All pipes are BSS colour coded, but a section is in semi-transparent hylon to reveal oil flow.

A crank angle timing disc is provided.

The moment of inertia of the flywheel can be increased by the addition of an inertia ring.

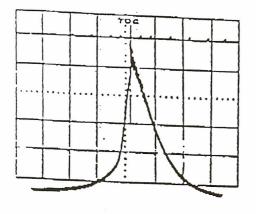
The engine is connected to a trunnion mounted dc swinging field dynamometer through a shalt with flexible universal couplings at each end.

SECTION THROUGH ENGINE

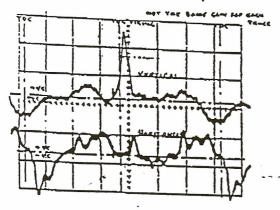
Electrical loading unit

An adjacent framework houses the electrical loading unit. A number of resistance mats in parallel provide 40 equal increments of load. A field regulator provides fine adjustment between each step.

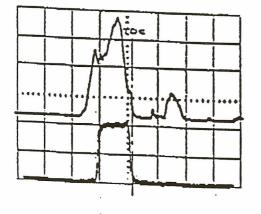
A separate circuit enables the engine to be motored for both starting and determination of friction horse power.


A dc supply of 50 amps at 220V is required for starting purposes, and also provides the generator field excitation. If no such supply is available suitable rectifier cubicle can be quoted for as an extra on request. (Item TD35e).

A single phase ac supply of 15 amps at 200/250V 50/60Hz is also required.


CONDIF FRIESORE THACES

1550 rec. mill Full treatike 10.5.1 Contraction ratio. Petrol 96 Octare 20 BTOC state ignition 10.7 BIIP 87.5 BIACP


HUMAN OF " DALIAGE

VERTICAL AND HORIZONTAL FORCES

DISSEL FUEL LINE PRESSURE AND NEEDLE LIFT

Range of experiments and performance graphs

Suggested experiments and investigations which may be conducted with this engine and for which complete controls and instrumentation are provided are listed below. This list is by no means exhaustive and serves only as a guide for carrying out a number of experiments pertinent to reciprocating internal combustion engine thermodynamics and dynamics. The facilities incorporated in the design enable an extensive range ol projects to be carried out.

1. Volumetric efficiency - the effect of valve timing. Independent variation of timing and period for inlet and exhaust valves.

2. Measurement of gas and dynamic forces polar load diagram.

3. Analaysis of cyclic irregularity.

4. Exhaust emission.

5. Measurement of friction and fluid pumping losses.

As a spark ignition engine:

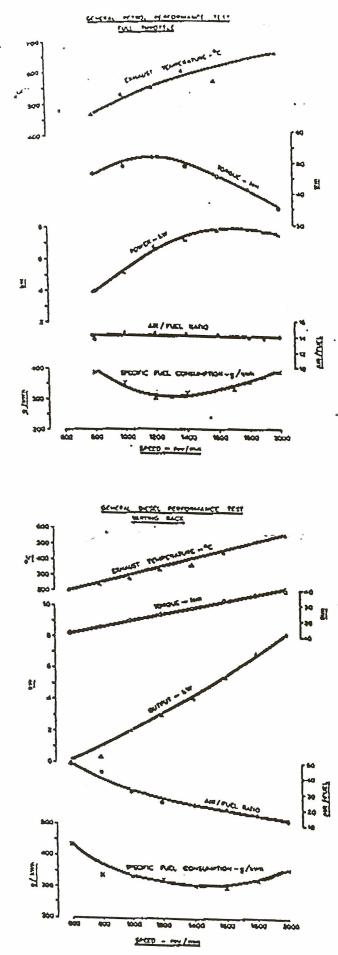
6. Performance characteristic curves of power. specific fuel consumption, etc., over the full speed range.

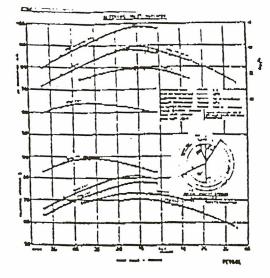
7. Mixture strength test v thermal efficiency and torque. Also power against air fuel ratio, specific fuel consumption, exhaust temperature. 8. Effect of variable compression ratio on power

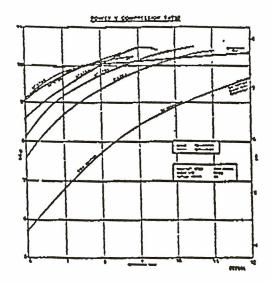
and thermal efficiency. Also detonation and preignition.

9. Variation of ignition timing - relationship with speed for maximum power developed. 10. Detonation and Octane rating.

As a compression ignition engine:


11. Performance characteristic curves


12. Effect of variable compression ratio at


selected injection timings.

13. Variation of Injection timing.

14. Fuel injection equipment studies - needle lift and fuel line pressure can be displayed.

Engine specification Bore: 95.25mm(3.75in). Stroke: 114.3mm(4.5in). rev/min: 500-3000. Nominal power: 7.5kW(10bhp). Compression ratio: 4.5:1 to 20:1.

Optional extra

TD35a Mk II Electronics Control Panel. TD35b Supercharger and associated equipment. TD35c Petrol Injection Equipment. TD35d Natural gas and LPG fuel equipment. TD35e Rectifier Unit to provide 220V 50A dc supply from 3 phase ac supply (voltage and frequency to be specified by the customer at the enquiry stage).

Space required

For free access around the engine test bed an area of 3960mm(156in) by 2540mm(100in) is required. The electronic control panel is a separate unit which should be positioned conveniently close to the engine.

1

Installation

The richs free standing on anti-vibration pads, and may readily be moved to any other suitable site if desired.

A 2m(61) length of flexible exhaust pipe is provided together with a suitable silencer.

Services required

dc supply, 220V 50A short term rating (starting only). Single phase ac supply 15A at 200/250V. 50/60Hz.

Mains or tank water supply for cooling water make-up.

Drainage for ho: water overflow.

Exhaust extension.

It is essential that the engine baseplate is mounted on a well supported concrete foundation.

Dimensions and weights

Nett: 2740mm(108in) x 1295mm(51in) x 1850mm(73in): 1620kg(3584lb) Gross: (approx – packed for export) 8.43m³(300ft³): 2444kg(5376lb)

Tender specification

To comprise a fully integrated test rig complete with instrumentation to allow a simultaneous study of dynamics and thermodynamics of internal combustion engines. The unit should have a variable compression ratio. variable between 4.5:1 and 20:1 whilst the engine is running. Valve timing and opening period should be adjustable whilst engine is running and the engine should capable of petrol or diesel operation. The time of diesel injection spark should be variable and the crank shaft suspension system should be strain gauged to allow the analysis of gas dynamic forces. Transducers should be filled to allow implication of cylinder pressure, diesel fuel line pressure, injector needle lift, flywheel cyclic variations. In addition the mass of the flywheel should be variable by an inertia ring addition. A separate cooling circuit for cylinder head and cylinder jacket should be incorporated and package unit should be available for super charging, petrol injection and operation on natural gas. and LPG.

2

9.0 **<u>APPENDIX 3</u>**

RAW DATA COMPUTER PRINTOUTS

.

Test Portion:	Baseline	Stack Diam.	12	Inches			
Engine Type:	EMD-12 Cyl	Mile/Hrs					
Equipment Type:	SW 1500	ID #:	1550		Baro	29.86	
Fuel Sp. Gravity(SG	.853	Temp:	65		Time:	8:20 p.m.	
RPM	Exh Temp	Py Inch	СО	НС	CO2	02	
2	267.4	1.8		.01 17		18.7	
2	268.6	1.8	And the second se	.01 17	1.51	18.8	
2	268.8	1.6		.01 15		18.8	
2 2	<u>269</u> 269.6	1.6 1.6		.01 15		18.8	
	205.0	1.0			1.5	18.8	
2.000	268.680	1.680	.010	15.800	1.488	18.780	Mean
0	.807	.110	.000	1.095	.026	.045	Std Dev
VFHC 1.58E-05	VFCO 0.0001	VFCO2 .015	VFO2 .188	Mtw1 28.990	pf1 428,961	PF1 65,302	
Company Name: Test Portion:	WiscCentral Treated	Location: Stack Diam:	Stevens Point	Inches	Test Date:	8/14/96	
Engine Type:		Mile/Hrs:	12	Inches			
Equipment Type		ID #:	1550		Baro:	29.96	
Fuel Sp. Gravity:	.853	Temp:	57				
SG Corr Factor:	1.000				Time:	8:15	
RPM	Exh Temp	Pylinch	60	HC	CO2	02	
2	251.8	1.6	and the second	.01 13	1.43	19	
2	254.2	1.6		.01 15		19.1	
2 2	253 253.4	1.6 1.5		.01 13	1.4	19.3 19.3	
2	255.4	1.5		.01 13		19.3	
2.000	253.680	1.560	.010	13.400	1.414	19.200	Mean
0	1.559	.055	.000	.894	.027	.141	Std Dev
VFHC 1.34E-05	VFCO 0.0001	VFCO2 .014	VFO2 .192	Mtw2 28.995	pf2 451,654	PF2 70,732	
Performance factor adj	usted for fuel density:	3	70,732	**% Ch	ange PF	=	8.32
		** A positive c	hange in PF equates to	a reduction in fue	l consumption.		
Company Name:	WiscCentral	Location	Stevens Point		Date:	6/19/96	

Test Portion:	Baseline	Stack Diam.	12	Inches			
Engine Type:	EMD-12 Cyl	Mile/Hrs					
Equipment Type:	SW 1500	ID #:	1550		Baro	29.86	
Fuel Sp. Gravity(SG	.853	Temp:	65				
			2		Time:	8:20 p.m.	
RPM	Exh Temp	Pylinch	CO	IC	<u>(0,02</u>	02	
4	477.6		0.0			16.4	
4	481.2		0.0			16.4	
4 4	486.6 489.2	4.6	0.0		and the second se	<u> </u>	
4	491.8	·	0.0			16.3	
4 000	405 200	4 (00	030	10.000	2.402	16.240	
4.000	<u>485.280</u> 5.815	4.600	.020	18.000	3.492 .013	16.340 .055	Mean Std Dev
VFHC 1.80E-05	VFCO 0.0002	VFCO2 .035	VFO2 .163	Mtw1 29.213	pf1 185,015	PF1 19,387	
Company Name: Fest Portion:	WiscCentral Treated	Location: Stack Diam:	Stevens Point 12	Inches	Test Date:	8/14/96	
Engine Type:	EMD-12 Cyl	Mile/Hrs:					
Equipment Type	SW 1500	ID #:	1550		Baro:	29.96	
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	57		Time:	8:15	
RPM	Exh Temp	Ryamene	CO]	CC022	02	
4	480.6		0.0			17.3	
4 4	483.4	4.4	0.0			17.2	
4 4	487		0.0			17.3	
4	486.6	4.3	0.0	1 17	3.33	17.3	
4.000	484.520	4.360	.010	15.400	3.352	17.280	Mean
0	2.614	.055	.000	2.191	.037	.045	Std Dev
VFHC 1.54E-05	VFCO 0.0001	VFCO2 .034	VFO2 .173	Mtw2 29.228	pf2 193,436	PF2 20,846	
Performance factor adju	sted for fuel density:	:	20,846	**% Ch	ange PF	_	7.53
Company Name:	WiscCentral	** A positive c	<i>hange in PF equates to a</i> Stevens Point	reduction in fue	l consumption. Date:	6/19/96	

Test Portion:	Baseline	Stack Diam.	12	Inches			
Engine Type:	EMD-16 Cyl	Mile/Hrs					
Equipment Type:	SW 1500	ID #:	1550		Baro	29.86	
Fuel Sp. Gravity(SG	.853	Temp:	65		Time:	8:20 p.m.	
RPM	Exh Temp	Evenich	CO	HC	C(02	02	
6	671.2	7	0.0		4.66	14.7	
6 6	673 681	7	0.0		4.64	14.7	
6	685.4	7	0.0		4.63	14.8	
6	687.4	7	0.0	2 23	4.71	14.7	
6.000	679.600 7.255	7.000	.020	22.800	4.662	14.720 .045	Mean Std Dev
VFHC 2.28E-05	VFCO 0.0002	VFCO2 .047	VFO2 .147	Mtw1 29.336	pf1 139,386	PF1 13,000	
Company Name: Test Portion:	Treated	Location: Stack Diam:	Stevens Point 12	Inches	Test Date:	8/14/96	
Engine Type: Equipment Type		Mile/Hrs: ID #:	1550		Baro:	29.96	
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	57		Time:	8:15	
RPM	Exh Temp	Pyelineha	EO	HC	6(9)2	02	
6	674.8	6.7	0.0		4.44	16	
6	678 682.6	6.7 6.7	0.0		4.41	16 16	
6	685.8	6.7	0.0		4.4	15.9	
6	685.4	6.7	0.0	2 19	4.51	16	
6.000 0	681.320 4.793	6.700 .000	.024 .005	18.600 .894	4.458	15.980 .045	Mean Std Dev
VFHC 1.86E-05	VFCO 0.00024	VFCO2 .045	VFO2 .160	Mtw2 29.354	pf2 145,760	PF2 13,929	
Performance factor adj	usted for fuel density:		13,929	**% Ch	ange PF		7.15
Company Name:	WiscCentral	** A positive c Location	hange in PF equates to a Stevens Point	reduction in fue	l consumption. Date:	6/19/96	

Company Name:	WiscCentral	Location	Stevens Point		Date:	6/18/96	
Test Portion:	Baseline	Stack Diam.	12	Inches			
Engine Type:	EMD-12 Cyl	Mile/Hrs					
Equipment Type:	SW 1500	ID #:	1554		Baro	29.83	
Fuel Sp. Gravity(SG	.853	Temp:	59		Time:	8:30 p.m.	
Rack	Exh Temp	Py Inch	CO	HC	CO2	02	
2	247	16 1.8	0	01 14	4 1 51	19	

2	247.6	1.8	0.01	14	1.51	19	
2	247.8	1.8	0.01	14	1.5	19	
2	248.6	1.8	0.01	14	1.5	19	
2	249.6	1.8	0.01	14	1.49	19	
2	250	1.8	0.01	14	1.46	19	
2	248.720	1.800	.010	14.000	1.492	19.000	Mean
0	1.064	.000	.000	.000	.019	.000	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
1.40E-05	0.0001	.015	.190	29.000	428,290	62,089	

Company Name:	WiscCentral	Location:	Stevens Point		Test Date:	8/14/96
Test Portion:	Treated	Stack Diam:	12	Inches		
Engine Type:	EMD-12 Cyl	Mile/Hrs:				
Equipment Type	SW 1500	ID #:	1554		Baro:	29.91
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	80		Time:	2:30 p.m.

Rack	Exh Temp	Py Inch	CO	;(C	CO2	02	
2	238	1.7	0.01	15	1.44	19	
2	235.8	1.7	0.01	15	1.4	19	
2	228	1.7	0.01	15	1.38	19.1	
2	227.2	1.7	0.01	15	1.4	19	
2	225.6	1.6	0.01	15	1.42	19	
		2					
2.000	230.920	1.680	.010	15.000	1.408	19.020	Mean
0	5.581	.045	.000	.000	.023	.045	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.50E-05	0.0001	.014	.190	28.987	453,102	67,222	
erformance factor ad	justed for fuel density:		67,222	**% Ch	ange PF	=	8.27

** A positive change in PF equates to a reduction in fuel consumption.

.

Company Name:	WiscCentral	Location:	Stevens Point		Date:	6/18/96	
Test Portion:	Baseline	Stack Diam.	12	Inches			
Engine Type:	EMD-12 Cyl	Mile/Hrs					
Equipment Type:	SW 1500	ID #:	1554		Baro	29.83	
Fuel Sp. Gravity(SG	.853	Temp:	59		Time:	8:30 p.m.	
Rack	Exh Temp	Py Inch	СО	HC	CO2	02	
4	476.8		0.01	17	3.86	16.3	
4	487.6	5	0.01	17	3.87	16.2	
4 4	499 504.4	5	0.01	18	3.83	16.2	
4	506.2	5	0.01	18	3.83	16.2	
4.000	494.800	5.000	.010	17.600	3.854	16.200	Mean
0	12.406	.000	.000	.548	.023	.071	Std Dev
VFHC 1.76E-05	VFCO 0.0001	VFCO2 .039	VFO2 .162	Mtw1 29.266	pf1 168,523	PF1 17,014	
Company Name: Test Portion: Engine Type:	WiscCentral Treated EMD-12 Cyl	Location: Stack Diam: Mile/Hrs:	Stevens Point 12	Inches	Test Date:	8/14/96	
Equipment Type	SW 1500	ID #:	1554		Baro:	29.91	
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	80		Time:	2:30 p.m.	
Rack	Exh Temp	Pysinch	CO	HC	CO2	02	
4	482.2		0.01	22		16.6	
4	497.2	5	0.01	22	3.57	16.5	
4 4	499.6		0.01	22	3.68	16.2	
4	506.8		0.01	22		16.4	
4 000	407 730	E 000	010	22.000	2 590	16 440	Mean
4.000	<u>497.720</u> 9.393	5.000	.010	22.000	3.580	<u>16.440</u> .152	Std Dev
VFHC 2.20E-05	VFCO 0.0001	VFCO2 .036	VFO2 .164	Mtw2 29.232	pf2 180,993	PF2 18,325	
				lut or or			
Performance factor adj	usted for fuel density:		18,325	**% Ch	ange PF	=	7.71

****** A positive change in PF equates to a reduction in fuel consumption.

Bart Sp. Grandingsing B3 Tentring 9 Seate Sp. Grandingsing Exch Teamp Per Inch CO HC CO 10 5.13 14.4 Seate Sp. 2 7.5 0.03 19 5.13 14.4 Seate Sp. 2 7.5 0.03 19 5.13 14.4 Seate Sp. 2 7.5 0.03 19 5.12 14.4 Seate Sp. 2 7.50 0.03 19 5.13 14.4 Seate Sp. 2 7.50 0.03 19 5.03 14.4 Seate Sp. 2 7.50 0.03 19.000 5.13 14.375 Marcin Deley 9.585 .000 .000 .000 .000 .000 Seate Sp. 2 7.500 .000 .000 .000 .000 .000 VFIC 0.003 0.001 .000 .000 .000 .000 .000 VFIC 0.003 0.01 .014 .014 .014 .014 Seate Sp. Central Keichfein: 12 Inter: .014 Seate Sp. Central Keichfein: 12 Inter: .014 Seate Sp. Central Keichfein: 12 Inter: .014	Company Name:	WiscCentral	Location:	Stevens Point		Date:	6/18/96	
quepment Type: SW 150 D f 154 Bare 29.3 het Sp. Granity(GG 3.3 Temp: 3 3 Temp: 3 Rack Exh Temp P Inch CO HC CO2 O2 1 6 6556 7.5 0.03 19 5.15 14.4 1 6 642 7.5 0.03 19 5.12 14.4 6 6401 7.5 0.03 19 5.13 14.3 6 6401 7.5 0.03 19 5.13 14.4 6 6401 7.5 0.03 19 5.13 14.3 6 6401 7.5 0.03 19.000 5.13 14.4 6 0.003 .051 .042 .051 .060 .025 .050 Su Dev VFHC VFCO VFC2 VFO2 Mtw1 pf1 pf1 .04196 car Darior: 10.01 10.6	fest Portion:	Baseline	Stack Diam.	12	Inches			
Part Sp. Growing/SG 53 Temp: 9 Reck Exch Temp Pr Inch CO HC CO2 02 02 6 6555 7.5 0.03 19 5.15 14.3 6 6552 7.5 0.03 19 5.15 14.4 6 6401 7.5 0.03 19 5.15 14.4 6 6401 7.5 0.03 19 5.13 14.4 6 6401 7.5 0.03 19.000 5.133 14.375 Meen 6.00 649.225 7.500 0.300 1000 5.033 14.375 Meen 6.00 649.225 7.500 0.300 1000 5.033 14.375 Meen 7.01 9.513 14.375 Meen Meen Meen Meen 1.002 0.003 0.51 14.4 20.97 12.6.73 R12 1.002 Meen 16 Meen	Engine Type:	EMD-12 Cyl	Mile/Hrs					
Rack Exh Temp Pr Inch CO HC CO2 O2 6 6552 7.5 0.03 19 5.15 14.3 6 6622 7.5 0.03 19 5.16 14.4 6 6401 7.5 0.03 19 5.12 14.4 6 6401 7.5 0.03 19 5.13 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19.000 5.13 14.375 Mean 6.000 649.225 7.500 .030 19.000 5.13 14.375 Mean 0 9.585 .000 .000 .000 .028 .059 Stil Dev VFHC VFCO VFCO2 VFO2 Miw1 pf1 Pf1 1.90E-05 0.003 D? 154	Equipment Type:	SW 1500	ID #:	1554		Baro	29.83	
Rack Exh Temp Pv Inch CO HC O2 6 655.6 7.5 0.03 19 5.15 14.3 6 642 7.5 0.03 19 5.16 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.50 0.03 19 5.1 14.3 6 649.235 7.500 .000 5.133 14.375 Mean 0 9.585 .000 .000 .000 5.133 14.375 Mean 0 9.585 .000 .051 .144 29.397 126.773 11,264 WiscCentral Location: Stevens Point Test Dat	Fuel Sp. Gravity(SG	.853	Temp:	59		ATT:	0.20	
6 6556 7.5 0.03 19 5.15 14.3 6 659.2 7.5 0.03 19 5.16 14.4 6 642 7.5 0.03 19 5.11 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 649.225 7.500 .030 19.000 5.133 14.375 Mean 6 649.225 7.500 .030 1.000 5.133 14.375 Mean 6 649.225 7.500 .050 .028 .050 Std Dev VFHC VFCO VFCO2 VFO2 Mtw1 pf1 pF1 1.90E-05 0.0003 .051 .144 29.397 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Time:</th> <th>8:30 p.m.</th> <th></th>						Time:	8:30 p.m.	
6 6522 7.5 0.03 19 5.16 14.4 6 640.1 7.5 0.03 19 5.12 14.4 6 640.1 7.5 0.03 19 5.12 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 6.00 649.225 7.500 .030 19.000 5.133 14.375 Mean 0 9.585 .000 .000 .000 .028 .050 5td Dev VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 1.90E-05 0.003 .051 .144 29.397 126,773 11.264								
6 642 7.5 0.03 19 5.12 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.1 7.5 0.03 19 5.1 14.4 6 640.23 7.500 .030 19.000 5.133 14.375 Mean 6.000 649.225 7.500 .030 19.000 5.133 14.375 Mean 6.000 649.225 7.500 .030 .000 .028 .050 Std Dev VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 1.90E-05 0.0003 .051 .144 .142 .144 .1496 Ear Partian: Treated Stack Diam: 12 Inches .1230 p.m. Signipment Type SW 1500								
Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Engine Type: EMD-12 Cyl Mile/Hrs: Engine Type: Stores 29.91 Sid Corr Factor: 1.000 D ft 1554 Baro: 29.91 Sid Corr Factor: 1.000 D ft 1003 28 4.84 14.8 6 620.4 7.2 0.03 28 4.86 14.7 6 612.8 7.2 0.03 28 4.86 14.7 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
0 9.585 .000 .000 .000 .028 .050 Std Dev VFHC VFCO VFCO VFO2 Mtw1 pf1 PF1 1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Sigite Type: EMD-12 Cyl Mile/Hrs: Equipment Type SW 1500 ID #: 1554 Baro: 29.91 Sug Gr Corr Factor: 1.000 Time: 2:30 p.m. 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 612.8 7.2 0.03 28 4.88	6	640.1	7.5	0.03	19	5.1	14.4	
0 9.585 .000 .000 .000 .028 .050 Std Dev VFHC VFCO VFCO VFO2 Mtw1 pf1 PF1 1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Sigite Type: EMD-12 Cyl Mile/Hrs: Equipment Type SW 1500 ID #: 1554 Baro: 29.91 Sug Gr Corr Factor: 1.000 Time: 2:30 p.m. 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 612.8 7.2 0.03 28 4.88								
0 9.585 .000 .000 .000 .028 .050 Std Dev VFHC VFCO VFCO VFO2 Mtw1 pf1 PF1 1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Edgipment Type EMD-12 Cyl Mile/Hrs: Egaipment Baro: 29.91 SG Corr Factor: 1.000 D #: 1554 Baro: 29.91 SG Corr Factor: 1.000 Time: 2:30 p.m. 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 612.8								
0 9.585 .000 .000 .000 .028 .050 Std Dev VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Trest Partion: Treated Stack Diam: 12 Inches Engine Type: EMD-12 Cyl Mile/IIrs: Equipment Type SW 1500 ID #: 1554 Baro: 29.91 SG Corr Factor: 1.000 Time: 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 620.4 7.2 0.03 28 4.88 15 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.88 15 6 619.6 7.1 0.03	6.000	649.225	7.500	.030	19,000	5 133	14 375	Mean
1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Test Portion: Treated Stack Diam: 12 Inches Engine Type: EMD-12 Cyl Mile/Hrs: Equipment Type SW 1500 ID #: 1554 Bare: 29.91 Fuel Sp. Gravity: .853 Temp: 80 SC Corr Factor: 1.000 Time: 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 6022 7.2 0.03 28 4.86 14.7 6 612.8 7.2 0.03 28 4.88 15 6 613.8 7.2 0.03 28 4.86 14.7 6 619.6 7.1 0.03 28 4.86 14.7 6 613.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.86 14.7 6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>								-
1.90E-05 0.0003 .051 .144 29.397 126,773 11,264 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Test Portion: Treated Stack Diam: 12 Inches Engine Type: EMD-12 Cyl Mile/Hrs: Equipment Type SW 1500 ID #: 1554 Baro: 29.91 Fuel Sp. Gravity: .853 Temp: 80 SG Corr Factor: 1.000 Time: 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 6020.4 7.2 0.03 28 4.86 14.7 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.86 14.7 6 619.6 7.1 0.03 28 4.86 15.1 6 619.6 7.1 0.03 28 4.86 15 6 619.6 7.1 0.03 28.000 4.866 14.920 Mean	VEHC	VECO	VECO2	VEO2	Mt1	5f 1	DF1	
Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Fest Portion: Treated Stack Diam: 12 Inches Inches Engine Type: EMD-12 Cyl Mile/Hrs: Inches 29.91 Signine Type SW 1500 ID #: 1554 Baro: 29.91 Suggiment Type SW 1500 ID #: 1554 Baro: 230 p.m. Suggiment Type SW 1500 ID #: 1554 Baro: 230 p.m. Suggiment Type SW 1500 ID #: 1000 Time: 2:30 p.m. Suggiment Type SW 1500 ID #: 0.03 28 4.84 14.8 6 622 7.2 0.03 28 4.85 15 6 612.8 7.2 0.03 28 4.85 15 6 619.6 7.1 0.03 28 4.85 15 6 619.6 7.1 0.03 28.000 4.866 14.920 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>						-		
Engine Type: EMD-12 Cyl Mile/Hrs: Equipment Type SW 1500 ID #: 1554 Baro: 29.91 Fuel Sp. Gravity: .853 Temp: 80 Strine: 2:30 p.m. SG Corr Factor: 1.000 Time: 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 622 7.2 0.03 28 4.84 14.8 6 612.8 7.2 0.03 28 4.88 15 6 613.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.88 15 6 619.6 7.1 0.03 28.000 4.866 14.920 Mean 6 618.720 7.180 .030 28.000 4.866 14.920 Mean 6 000 6.000								
Equipment Type SW 1500 ID #: 1554 Baro: 29.91 Fuel Sp. Gravity: .853 Temp: 80 Time: 2:30 p.m. SG Corr Factor: 1.000 Time: 2:30 p.m. 2:30 p.m. Rack Exh Temp Py Inch CO HC CO2 O2 Image: Construction of the construction o	Company Name:	WiscCentral	Location:	Stevens Point	·			
SG Corr Factor: 1.000 Time: 2:30 p.m. Rack Exh Temp Pv Inch CO HC CO2 O2 6 620.4 7.2 0.03 28 4.84 14.8 6 622 7.2 0.03 28 4.84 14.8 6 612.8 7.2 0.03 28 4.86 14.7 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	Company Name: Test Portion:	WiscCentral Treated	Location; Stack Diam:	Stevens Point	·			
Rack Exh Temp Pv Inch CO HC CO2 O2 6 620.4 7.2 0.03 28 4.84 14.8 6 622 7.2 0.03 28 4.86 14.7 6 612.8 7.2 0.03 28 4.88 15 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 14.86 14.92 6 600 618.720 7.180 .030 28.000 4.866 14.920	Company Name: Test Portion: Engine Type:	WiscCentral Treated EMD-12 Cyl	Location: Stack Diam: Mile/Hrs:	Stevens Point 12	Inches	Test Date:	8/14/96	
6 620.4 7.2 0.03 28 4.84 14.8 6 622 7.2 0.03 28 4.86 14.7 6 612.8 7.2 0.03 28 4.88 15 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.180 0.30 28.000 4.866 14.920 Mean 6.000 618.720 7.180 .030 28.000 4.866 14.920 Mean 0 3.515 .045 .000 .000 .017<	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity:	WiscCentral Treated EMD-12 Cyl SW 1500 .853	Location: Stack Diam: Mile/Hrs: ID #:	Stevens Point 12 1554	Inches	Test Date: Baro:	8/14/96 29.91	
6 622 7.2 0.03 28 4.86 14.7 6 612.8 7.2 0.03 28 4.88 15 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 618.720 7.180 .030 28.000 4.866 14.920 Mean 0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 <	Company Name: Fest Portion: Engine Type: Equipment Type Fuel Sp. Gravity:	WiscCentral Treated EMD-12 Cyl SW 1500 .853	Location: Stack Diam: Mile/Hrs: ID #:	Stevens Point 12 1554	Inches	Test Date: Baro:	8/14/96 29.91	
6 612.8 7.2 0.03 28 4.88 15 6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.86 14.92 6.000 618.720 7.180 .030 28.000 4.866 14.920 Mean 0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.	Company Name: Fest Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch	Stevens Point 12 1554 80 CO	Inches	Test Date: Baro: Time: CO2	8/14/96 29.91 2:30 p.m.	
6 618.8 7.2 0.03 28 4.88 15 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 619.6 7.1 0.03 28 4.87 15.1 6 618.720 7.180 .030 28.000 4.866 14.920 Mean 6.000 618.720 7.180 .030 28.000 4.866 14.920 Mean 0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Fest Portion: Engine Type: Squipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2	Stevens Point 12 1554 80 CO 0.03	Inches HC 28	Test Date: Baro: Time: CO2 4.84	8/14/96 29.91 2:30 p.m. @2 14.8	
6.000 618.720 7.180 .030 28.000 4.866 14.920 Mean 6.000 618.720 7.180 .030 28.000 4.866 14.920 Mean 0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Fest Portion: Engine Type: Equipment Type Fuel Sp. Gravity: EG Corr Factor: Rack 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp <u>620.4</u>	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03	Inches HC 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86	8/14/96 29.91 2:30 p.m. <u>Ø2</u> 14.8 14.7	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Fest Portion: Engine Type: Equipment Type Suel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Fest Portion: Engine Type: Equipment Type Suel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
0 3.515 .045 .000 .000 .017 .164 Std Dev VFHC VFCO VFCO2 VFO2 Mtw2 pf2 PF2 2.80E-05 0.0003 .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8	Location: Stock Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15	
2.80E-05 0.0003 / .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 612.8 618.8 619.6	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.1 0 0 0 0 0 0 0 0 0 0 0 0 0	Stevens Point 12 1554 80 <u>CO</u> 0.03 0.03 0.03 0.03 0.03	Inches HC 28 28 28 28 28 28 28 28 28 2	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88 4.87 	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15 15.1	
2.80E-05 0.0003 / .049 .149 29.377 133,408 11,963	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8 619.6 618.720	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.0	Inches HC 28 28 28 28 28 28 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88 4.87 	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15.1 15.1 15.1 15.1	Mean
	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6 6 6 6 6 6 6 6 6 6	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 622 612.8 618.8 619.6 	Location: Stack Diam: Mile/Hrs: ID #: Temp: Py Inch 7.2 7.2 7.2 7.2 7.2 7.1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Stevens Point 12 1554 80 CO 0.03 0.04 0.0	Inches HC 28 28 28 28 28 28 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88 4.87 	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15.1 15.1 15.1 15.1 15.1 15.1 15.1	Mean
	Company Name: Test Portion: Engine Type: Equipment Type Fuel Sp. Gravity: SG Corr Factor: Rack 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	WiscCentral Treated EMD-12 Cyl SW 1500 .853 1.000 Exh Temp 620.4 612.8 618.8 619.6 618.720 3.515 VFCO	Location: Stack Diam: Mile/Hrs: ID #: Temp: Pv Inch 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	Stevens Point 12 1554 80 CO 0.03 0.00 0.03 0.00 0.03 0.00 0.0	Inches HC 28 28 28 28 28 28 28 28 28 28 28 28 28	Test Date: Baro: Time: CO2 4.84 4.86 4.88 4.88 4.87 	8/14/96 29.91 2:30 p.m. 02 14.8 14.7 15 15.1 15.1 15.1 15.1 15.1 15.1 15.1	Mean

****** A positive change in PF equates to a reduction in fuel consumption.

Test Portion:	Baseline	Stack Diam.	8	Inches			
Engine Type:	EMD-16 Cyl	Mile/Hrs					
Equipment Type:	GP 35	ID #:	4009		Baro	29.82	
Fuel Sp. Gravity(SG	.853	Temp:	57		Time:	11:22	
RPM	Exh Temp	Pv Inch	CO	HC	(6)02	02	
2	276.2	1.6	0.01		1.83	18.5	
2	276.4 276.8	1.6 1.6	0.01		1.83	18.5	
2	270.0	1.6	0.01		1.83	18.6	
2	277.4	1.6	0.01	14	1.83	18.5	
2.000	276.760 .477	1.600	.010	14.000	1.830 .000	18.540 .055	Mean Std Dev
VFHC 1.40E-05	VFCO 0.0001	VFCO2 .018	VFO2 .185	Mtw1 29.035	pf1 350,428	PF1 123,591	
Company Name: Test Portion:	WiscCentral Treated	Location: Stack Diam:	Stevens Point 8	Inches	Test Date:	8/15/96	
Engine Type:	EMD-16 Cyl	Mile/Hrs:					
Equipment Type	GP 35	ID #:	4009		Baro:	29.99	
Fuel Sp. Gravity: SG Corr Factor:	.854 .999	Temp:	59		Time:	8:15	
RPM	Exhitemp	Payalmen	CO	HIC	(KO2)	02	
2	289	1.65	0.01		1.61	19	
2 2	283.6 283.6	1.7	0.01		1.51	19 19	
2	283.6	1.7	0.01			19	
2	283.4	1.7	0.01	15	1.51	19	
2.000	284.640	1.690	.010	15.000	1.524	19.000	Mean
0	2.439	.022	.000	.000	.049	.000	Std Dev
VFHC 1.50E-05	VFCO 0.0001	VFCO2 .015	VFO2 .190	Mtw2 29.005	pf2 419,309	PF2 145,072	
Performance factor adj	justed for fuel density:		144,902	**% Ch	ange PF	-	17.24 %
		** A positive c	hange in PF equates to a	reduction in fue	l consumption.		
Company Name:	WiscCentral	Location	Stevens Point		Date:	6/19/96	

Engine Type: Equipment Type: Fuel Sp. Gravity(SG 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GP 35	Mile/Hrs ID #: Temp: Pv Inch 4 4 4 4 4	4009 57 CO 0.02 0.02 0.02 0.01	HC 18 17 17	Baro Time: CO2 3.84	29.82 11:22 02 16.2	
Fuel Sp. Gravity(SG	.853 Exh Temp 481.4 487.4 493.2 492.8	Temp: Pv Inch 4 4 4 4 4 4	57 CO 0.02 0.02 0.02 0.02 0.01	18 17	Time: CO2 3.84	11:22 O2	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 000	Exh Temp 481.4 487.4 493.2 492.8	Py Inch 4 4 4 4 4	CO 0.02 0.02 0.02 0.02 0.01	18 17	CO2 3.84	02	
4 4 4 4 4 	481.4 487.4 493.2 492.8	4 4 4 4	0.02 0.02 0.02 0.01	18 17	3.84		
4 4 4 4 4 	481.4 487.4 493.2 492.8	4 4 4 4	0.02 0.02 0.02 0.01	18 17	3.84		
4 4 4 4 4 4 4 4 4 4 4 4 4 4	487.4 493.2 492.8	4	0.02 0.02 0.01	17			1
4	492.8	4	0.01	17	3.8	16.2	
4					3.84	16.3	
4.000	473	4	0.02	17	3.83	16.3 16.3	
			0.02				
	489.960	4.000	.018	17.200	3.824	16.260	Mean
	5.563	.000	.004	.447	.018		Std Dev
VFHC 1.72E-05	VFCO 0.00018	VFCO2 .038	VFO2 .163	Mtw1 29.263	pf1 169,482	PF1 42,927	×.
Company Name: Fest Portion:		Location: Stack Diam:	Stevens Point	Inches	Test Date:	8/15/96	
Engine Type:		Mile/Hrs:	-				
Equipment Type	ne haddalaan in soord van • oord	ID #:	4009		Baro:	29.99	
Fuel Sp. Gravity: SG Corr Factor:	.854 .999	Temp:	59		Time:	8:15	
RPM	Exh Temp	Py Inch.	СО	HC	C(02	02	
4	508	3.8	0.02	27	3.85	16.3	
4	510	3.7	0.02	27	3.85	16.3	
4	510	3.7	0.02	24	3.84	16.5	
4 4	511.2 510.8	3.7	0.02	26 26	3.82	16.4 16.4	
4.000	510.000	3.720	.020	26.000	3.836		Mean
0	1.233	.045	.000	1.225	.015	.084	Std Dev
VFHC	VFCO 0.0002	VFCO2 .038	VFO2 .164	Mtw2 29.270	pf2 168,665	PF2 44,891	
2.60E-05		4	14,838	**% Ch			

Test Portion:	Baseline	Stack Diam.	8	Inches			
Engine Type:	EMD-16 Cyl	Mile/Hrs					
Equipment Type:	GP 35	ID #:	4009		Baro	29.82	
Fuel Sp. Gravity(SG	.853	Temp:	57		Time:	11:22	
RPM	Exh Temp	Extricit	CO	HC	C02	02	
6	668.4	7.2	0.1			14.8	and the second se
6 6	<u>672.8</u> 677.6	7.2	0.1		4.91	14.8	
6	678.8		0.09		4.89	15	
6	679.2	7.2	0.09	21	4.92	14.9	
6.000	675.360	7.200	.094	20.600	4.906	14.900	Mean
0	4.653	.000	.005	.548	.015	.100	Std Dev
VFHC 2.06E-05	VFCO 0.00094	VFCO2 .049	VFO2 .149	Mtw1 29.382	pf1 130,789	PF1 26,993	
Test Portion: Engine Type:	Treated EMD-16 Cyl	Stack Diam: Mile/Hrs:	8	Inches			
Equipment Type	GP 35	ID #:	4009		Baro:	29.99	
Fuel Sp. Gravity: SG Corr Factor:	.854 .999	Temp:	59		Time:	8:15	
RPM	Dahatemp	Examene	CO	110	C(02	02	
6 6	<u> </u>	6.8 6.8	0.09			15.2 15.1	
6	690.8		0.09			15.1	
6	691.4	6.8	0.09	31	4.92	15.2	
6	692	6.8	0.05	31	4.88	15.2	
6.000 0	690.160 1.862	6.800 .000	.090 .000	31.400 .548	4.900	15.180 .045	Mean Std Dev
VFHC 3.14E-05	VFCO 0.0009	VFCO2 .049	VFO2 .152	Mtw2 29.393	pf2 130,918	PF2 28,064	
Performance factor adjust	sted for fuel density:		28,031	**% Cł	ange PF	=	3.84
Company Name:	WiscCentral	** A positive c Location	hange in PF equates to a Stevens Point	reduction in fue	el consumption. Date:	6/19/96	

Test Portion:	Baseline	Stack Diam.	8	Inches			
Engine Type:	EMD-16 Cyl	Mile/Hrs					
Equipment Type:	GP 35	ID #:	4009		Baro	29.82	
Fuel Sp. Gravity(SG	.853	Temp:	57		Time:	11:22	
RPM	Exh Temp	Py Inch	СО	НС	CO2	02	
8	848.8			.29 23		13.2	
8	852.6			.28 23		13.3	
8	853.2			.28 23		13.4	
8	<u> </u>	9.2		.29 22 .29 22		13.4	
0.000					7 0 (0	10.050	
8.000	854.360 4.371	9.320	.286	22.600	5.968 .041	13.360	Mean Std Dev
VFHC 2.26E-05	VFCO 0.00286	VFCO2 .060	VFO2 .134	Mtw1 29.491	pf1 104,984	PF1 20,491	
Company Name: Test Portion: Engine Type:	WiscCentral Treated EMD-16 Cyl	Location: Stack Diam: Mile/Hrs:	Stevens Point 8	Inches	Test Date:	8/15/96	
Equipment Type	GP 35	ID #:	4009		Baro:	29.99	
Fuel Sp. Gravity: SG Corr Factor:	.854 .999	Temp:	59		Time:	8:15	
RPM	Exh Temp	Evanish	CO	líC	C02	02	
8	868			.25 44		14.1	
8	871 875.2	9		.25 44		13.9 13.8	
8	873.2			.25 39		13.8	
8	882	9	0.	.27 31	7 5.65	14.2	
8.000	874.720	9.000	.256	41.000	5.744	14.020	Mean
0	5.464	.000	.009	3.082	.063	.164	Std Dev
VFHC 4.10E-05	VFCO 0.00256	VFCO2 .057	VFO2 .140	Mtw2 29.482	pf2 109,173	PF2 21,913	
Performance factor adju	sted for fuel density:	:	21,888	**% C	hange PF		6.82
Performance factor adjus Company Name:		:		**% C	hange PF		6.82

Test Portion:	Baseline	Stack Diam.	8	Inches		
Engine Type:	EMD-16 Cyl	Mile/Hrs				
Equipment Type:	GP 35	ID #:	4006		Baro	29.86
Fuel Sp. Gravity(SG	.853	Temp:	57			
					Time:	8:35

	RPM	Exh Temp	Ryamen	CO	11(C	C02	02	
0	2	262.6	1.8	0.02	17	1.51	18.9	
	2	264.8	1.9	0.02	17	1.51	18.9	
	2	264.8	1.8	0.02	17	1.51	18.9	
	2	266.8	1.8	0.02	17	1.47	19	
	×							
	2.000	264.750	1.825	.020	17.000	1.500	18.925	Mean
	0	1.716	.050	.000	.000	.020	.050	Std Dev
	VFHC	VFCO	VFCO2	VFO2	Mtw1	pf1	PF1	
	1.70E-05	0.0002	.015	.189	28.998	422,694	138,537	

Company Name:	WiscCentral	Location:	Stevens Point		Test Date:	8/14/96
Test Portion:	Treated	Stack Diam:	8	Inches		
Engine Type:	EMD-16 Cyl	Mile/Hrs:				
Equipment Type	GP 35	ID #:	4006		Baro:	29.95
Fuel Sp. Gravity:	.853	Temp:	60			
SG Corr Factor:	1.000				Time:	9:45

RPM	Exh Temp	Pv Inch	CO	HC	C02	02	
2	271	1.6	0.02	18	1.52	18.9	
2	270.4	1.6	0.02	18	1.52	19	
2	273.4	1.6	0.01	17	1.46	19	
2	274	1.6	0.01	17	1.52	19	
2	276.2	1.6	0.02	17	1.46	19	
2.000	273.000	1.600	.016	17.400	1.496	18.980	Mean
0	2.354	.000	.005	.548	.033	.045	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
1.74E-05	0.00016	.015	.190	29.000	424,867	149,787	

Performance factor adjusted for fuel density:

149,787

**% Change PF=

8.12

%

** A positive change in PF equates to a reduction in fuel consumption.

Wisc.-Central

Location Stevens Point Date: 6/19/96

Test Portion:	Baseline	Stack Diam.	8	Inches				
Engine Type:	EMD-16 Cyl	Mile/Hrs						
Equipment Type:	GP 35	ID #:	4006		Baro	29.81		
Fuel Sp. Gravity(SG	.853	Temp:	57		Time:	8:35		
RPM	Exh Temp	Py Inch	CO	HC	(C(0)2	02		
4	484	4.2	0.01	19		16.7		
4	484.2		0.01	19	3.43	16.7	and the second se	_
4 4	483.2	4.2	0.01	19 18	3.38 3.37	16.8		_
4	483.2		0.01	18	3.35	16.8		-
4.000	483.480	4.200	.010 .000	18.600	3.394 .039	16.760 .055	Mean Std Dev	
								_
VFHC 1.86E-05	VFCO 0.0001	.034	VFO2 .168	Mtw1 29.215	pf1 190,851	PF1 47,005		
Test Portion: Engine Type:	Treated EMD-16 Cyl	Stack Diam: Mile/Hrs:	8	Inches				
Equipment Type	GP 35	ID #:	4006		Baro:	29.95		
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	60		Time:	9:45		
RPM	Exh Temp	Py Inch	CO	HC	CO2	02		
4	513.6	4	0.01	24	3.39	16.7	1	
4	517.4		0.01		3.39	16.7		
4	517.4		0.01	24	3.39	16.7		
4 4	<u> </u>		0.01	25	3.37 3.36	16.6 16.6	-	-
	510		0.01			10.0		
4.000	516.840	3.920	.010	24.400	3.380	16.660	Mean	
0	1.830	.110	.000	.548	.014	.055	Std Dev	
VFHC 2.44E-05	VFCO 0.0001	VFCO2 .034	VFO2 .167	Mtw2 29.209	pf2 191,389	PF2 49,764		
Performance factor adj	usted for fuel density:		49,764	**% Ch	ange PF:	=	5.87]%
Company Name:	WiscCentral	** A positive cl Location	hange in PF equates to a r Stevens Point	-	l consumption. Date:	6/19/96		

Test Portion:	Baseline	Stack Diam.	8	Inches			
Engine Type:	EMD-16 Cyl	Mile/Hrs					
Equipment Type:	GP 35	ID #:	4006		Baro	29.81	
Fuel Sp. Gravity(SG	.853	Temp:	57		Time:	8:35	
RPM	Exh Temp	Lys men	C(0)		C(02	02	
6	653.6	7.2	0.0			15.3	
6	<u> </u>	7.2	0.03			15.3	
6	657.2	7.2	0.0.		4.56	15.2	
6	658	7.2	0.02	3 23	4.56	15.3	3
6.000	656.400	7.200	.030	23.800	4.560	15.260	Mean
0	1.811	.000	.000	.837	.000	.055	Std Dev
VFHC 2.38E-05	VFCO 0.0003	VFCO2 .046	VFO2 .153	Mtw1 29.341	pf1 142,177	PF1 29,093	
Test Portion: Engine Type:	Treated EMD-16 Cyl	Stack Diam: Mile/Hrs:	8	Inches			
Equipment Type	GP 35	ID #:	4006		Baro:	29.95	
Fuel Sp. Gravity: SG Corr Factor:	.853 1.000	Temp:	60		Time:	9:45	
RPM	Dxh (temp		(0(0)	1(C	(0(0)24	02	
6	691.6	6.8	0.0			15.8	
6	690.6		0.03			15.7	
6	690.8		0.03			15.6	
6 6	691.6 693		0.03			15.5	
0	075	0.0	0.0.	20	4.0	10.0	
6.000	691.520	6.800	.030	28.200	4.584	15.620	Mean
0	.944	.000	.000	.447	.021	.130	Std Dev
VFHC	VFCO	VFCO2	VFO2	Mtw2	pf2	PF2	
2.82E-05	0.0003	.046	.156	29.360	141,443	30,317	
Performance factor adj	usted for fuel density:		30,317	**% Cl	ange PF		4.21
		** A positive of	change in PF equates to a	reduction in fue	l consumption.		
Company Name:	WiscCentral	Location	Stevens Point		Date:	6/19/96	
		100200000000000000000000000000000000000					

VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110,536 21,307 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Test Portion: Treated Stack Diam: 8 Inches Engine Type: EMD-16 Cyl Mile/Hrs: 60 Baro: 29.95 Fuel Sp. Gravity: .853 Temp: 60 SG Corr Factor: 1.000 Time: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.	on: E	Baseline Stack	k Diam.	8	Inches			
Part Sp. Gravity(SG 8.3 Tenp: 51 RepM Exh Temp Pv Inch CO IIC CO2 O2 8 858.4 9.6 0.21 26 5.76 13.6 8 858.4 9.6 0.21 25 5.66 13.7 8 866.4 9.6 0.21 25 5.66 13.7 8 865.4 9.6 0.21 25 5.66 13.7 8 865.4 9.6 0.21 25 5.66 13.7 8 865.4 9.6 0.21 25 5.66 13.7 9 0 10 1.0 1.0 1.0 1.0 9 0.01 2.10 2.520 5.722 13.660 Mean 0 5.172 0.000 .000 .837 0.39 1.055 SUD VFHC 0.0021 0.57 YFO2 Mfw1 pfn Pf1 2.5265 0.0021 0.57 1.37 2.43 10.35 2.1,37 10 10 0.57 1.37 2.43 10.53 21,37 11 10 10 10 1.05 11.53 21,37	pe: EM	4D-16 Cyl Mile/	/Hrs					
Time: 8:35 RPM Exh Temp Pv Inch CO HC CO2 O2 8 853.2 9.6 0.21 26 5.76 13.6 8 862.4 9.6 0.21 25 5.68 13.7 8 862.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 9 0.21 24 5.75 13.7 14.6 14.6 9 0.21 24 5.75 13.7 14.6 14.6 9 0.21 24 5.75 13.6 14.6 9 0.210 25.200 5.722 13.660 Mean 9 5.172 .000 .000 .837 .039 .055 Std D VFHC VFCO VFCO2 VFO2 Mtwl pfl PFl 2.52E-05 0.0021 .057 .137 29.463	t Type:	GP 35 ID #:	:	4006		Baro	29.81	
8 853.2 9.6 0.21 26 5.76 13.6 8 858.4 9.6 0.21 25 5.68 13.7 8 864.8 9.6 0.21 25 5.68 13.7 8 864.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 9 9.600 .210 25.200 5.722 13.660 Mean 9 5.172 .000 .837 .039 .055 Std D VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1	iravity(SG	.853 Tem	np:	57		Time:	8:35	
8 833.2 9.6 0.21 26 5.76 13.6 8 858.4 9.6 0.21 25 5.68 13.7 8 864.8 9.6 0.21 25 5.68 13.7 8 864.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 9 0.21 24 5.75 13.7 9 9.600 .210 25.200 5.722 13.660 Mean 9 9.600 .210 25.200 5.722 13.660 Mean 9 0.20 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 <th>M Ex</th> <th>ch Temp Pv</th> <th>Inch</th> <th>CO</th> <th>HC</th> <th>C(02</th> <th>02</th> <th></th>	M Ex	ch Temp Pv	Inch	CO	HC	C(02	02	
8 862,4 9,6 0.21 25 5,68 13,7 8 864,8 9,6 0.21 23 5,68 13,7 8 865,8 9,6 0.21 24 5,75 13,7 9 0 0.21 24 5,75 13,7 9 0 0.21 24 5,75 13,7 9 0 0.21 24 5,75 13,7 9 0 0 0 10 10 10 9 0 5.722 13,660 Mean 10 10 9 5.172 0.000 .837 0.39 0.655 5.40 VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110,536 21,907 Campany Name: WiscCentral Location: 8 Inches S14196 Segite Portion: Treated Stack				0.21				
8 864.8 9.6 0.21 25 5.68 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 8 865.8 9.6 0.21 24 5.75 13.7 9 9.600 .210 25.200 5.722 13.660 Mean 9 5.172 .000 .000 .837 .039 .055 Std D VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110.536 21.307 Company Name: WiscCentral Location: Stevens Point Treated Stack Diam: Equipment Type GP 35 ID #: 4006 Bare: 29.95 Find Sp. Gravity: St 33 <temp: 1.000="" 60="" 9:45="" <table="" corr="" factor:="" st="" time:=""> 9:45 9:45 RPM Exh Temp Pv Inch CO Incolor 144 St 45 St 45 St 45 St 44 St 44 St 45 St 45 St 45 St 44 St 45 St 45 St 45 St 45 St 45 St 44 St 45 St 44 St 44 St 44<</temp:>	3		9.6	0.21		5.74	13.6	
8 865.8 9.6 0.21 24 5.75 13.7								
Source Second Second<								
0 5.172 .000 .000 .837 .039 .055 Std D VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110,536 21,307 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: EMD-16 Cyl Müle/Hrs: Emp: 60 Baro: 29.95 Fuel Sp. Gravity: .853 Temp: 60 Ime: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 A<	<u> </u>		9.0	0.21	24	5.75	13.7	
0 5.172 .000 .000 .837 .039 .055 Std D VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110,536 21,307 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Seguipment Type: EMD-16 Cy1 Mile/Hrs: Stevens Point Time: 9:45 State Sp. Gravity: .853 Temp: 60 Baro: 29.95 State Line Sp.			(0)				10 550	
VFHC VFCO VFCO2 VFO2 Mtw1 pf1 PF1 2.52E-05 0.0021 .057 .137 29.463 110,536 21,307 Company Name: WiscCentral Location: Stevens Point Test Date: 8/14/96 Test Portion: Treated Stack Diam: 8 Inches Engine Type: EMD-16 Cyl Mile/Hrs: 60 Baro: 29.95 Fuel Sp. Gravity: .853 Temp: 60 SG Corr Factor: 1.000 Time: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 897.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5								Mean Std Dev
Test Portion: Treated Stack Diam: 8 Inches Engine Type: EMD-16 Cyl Mile/Hrs: 29.95 Equipment Type GP 35 ID #: 4006 Baro: 29.95 Fuel Sp. Gravity: .853 Temp: 60 5.36 14.5 SG Corr Factor: 1.000 Time: 9:45 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 8 893.2 9 0.2 44 5.36 14.5 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 890.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 14.6 9 0.2 44 5.41 14.6						-		
Equipment Type GP 35 ID #: 4006 Baro: 29.95 Suel Sp. Gravity: .853 Temp: 60 60 Time: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 Question 8 891.4 9 0.2 45 5.36 14.5 36 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 890.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.1 0 0 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Test Date:</td><td>8/14/96</td><td></td></t<>						Test Date:	8/14/96	
Fuel Sp. Gravity: .853 Temp: 60 SG Corr Factor: 1.000 Time: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 8 891.4 9 0.2 45 5.36 14.5 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 890.8 9 0.2 44 5.42 14.6 8 890.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.1 14.50 14.50	pe: EM	ID-16 Cyl Mile/	/Hrs:					
SG Corr Factor: 1.00 Time: 9:45 RPM Exh Temp Pv Inch CO HC CO2 O2 8 891.4 9 0.2 45 5.36 14.5 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 890.8 9 0.2 44 5.41 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 14.6 9 0.2 44 5.41 14.6 16.6 16.	t Type	GP 35 ID #:	<i>t</i>	4006	1000	Baro:	29.95	
8 891.4 9 0.2 45 5.36 14.5 8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 892 9 0.2 42 5.39 14.6 8 897.8 9 0.2 44 5.41 14.6 0 0.2 44 5.41 14.6 14.6 14.6 10 0.2 44 5.41 14.6			p:	60	17101	Time:	9:45	
8 893.2 9 0.2 44 5.42 14.4 8 890.8 9 0.19 42 5.37 14.7 8 892 9 0.2 42 5.39 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 14.6 9 0.2 44 5.41 14.6 14.6 14.6 9 0.2 44 5.41 14.6 14.6 14.6 14.6 9 0.2 14.6 14.6 14.6 14.6 1	M Ex	ch Temp Pv	linch	CO		02	02	
8 890.8 9 0.19 42 5.37 14.7 8 892 9 0.2 42 5.39 14.6 8 897.8 9 0.2 44 5.41 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 44 5.41 14.6 14.6 9 0.2 1.0 1.0 1.0 1.0 1.0 9 0.2 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0			and the second se					
8 892 9 0.2 42 5.39 14.6 8 897.8 9 0.2 44 5.41 14.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
8 897.8 9 0.2 44 5.41 14.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
							14.560	
0 2.805 .000 .004 1.342 .025 .114 Std De)	2.805 .0	.000	.004	1.342	.025	.114	Std Dev
VFHCVFCOVFCO2VFO2Mtw2pf2PF24.34E-050.00198.054.14629.447117,01423,632						-		
Performance factor adjusted for fuel density: 23,632 **% Change PF = 10.9	ce factor adjusted for	r fuel density:	23,632		**% Ch	ange PF=	=	10.91
** A positive change in PF equates to a reduction in fuel consumption.	N 7			-	-	-	(110/07	

10.0 **<u>APPENDIX 4</u>**

CARBON MASS BALANCE FORMULAE

.

Figure 1 CARBON MASS BALANCE FORMULAE

ASSUMPTIONS	$C_{12}H_{26} \text{ and } SG = 0.82$ Time is constant Load is constant
pf pf. PF PF CI SC VI d Pv	 2 = Calculated Performance Factor (Treated) 2 = Performance Factor (adjusted for Baseline exhaust mass) 2 = Performance Factor (adjusted for Treated exhaust mass) 2 = Performance Factor (adjusted for Treated exhaust mass) 3 = Volumetric Flow Rate of the Exhaust 4 = Specific Gravity of the Fuel 5 = Volume Fraction a = Exhaust stack diameter in inches b = Velocity pressure in inches of H₂0 b = Barometric pressure in inches of mercury
EQUATIONS:	
	'FHC)(86)+(VFCO)(28)+(VFCO ₂)(44)+(VFO ₂)(32)+[(1- FHC-VFCO-VFCO ₂ -VFO ₂)(28)]
pf1 or pf2 =	<u>3099.6 x Mwt</u> 86(VFHC)+13.89(VFCO)+13.89(VFCO ₂)
CFM =	$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{Pv}{1.325(PB/ET+460)}} \right)$
PF1 or PF2 =	pf x (Te+460) CFM
FUEL ECONOMY: PERCENT INCREASE (OF	DECREASE) <u>PF2 - PF1</u> x 100 PF1

.

Figure 2.

SAMPLE CALCULATION FOR THE CARBON MASS BALANCE

BASELINE:

Equation	1	(Volume Fractions)
~ quality		(I URUME A RACCEUMO)

VFHC	$= 13.20/1,000,000 \\= 0.0000132$
VFCO	= 0.017/100 = 0.00017
VFCO ₂	= 1.937/100 = 0.01937
VFO ₂	= 17.10/100 = 0.171

Equation 2 (Molecular Weight)

Mwt1		-(0.00017)(28) + (0.01937)(44) + (0.171)(32) 0.00017-0.01937-0.171)(28)]
Mwt1	=28.995	· · · · · · · · · · · · · · · · · · ·

Equation 3 (Calculated Performance Factor)

pf1 =	3099.6 x 28.995
-	86(0.0000132)+13.89(0.00017)+13.89(0.01937)

. . . .

,

pf1 = 329,809

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{Pv}{1.325(PB|ET+460)}} \right)$$

 $Pv = Velocity pressure in inches of H_20$

 P_{B} = Barometric pressure in inches of mercury

Te = Exhaust temperature $^{\circ}F$

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.80}{1.325(30.00/313.100+460)}} \right)$$

. . .

CFM =2358.37

Equation 5 (Corrected Performance Factor)

PF1	= 329,809(313.1 deg F + 460)
	2358.37 CFM
	· · · ·

PF1 = 108,115

TREATED:

Equation 1 (Volume Fractions)

VFHC	= 14.6/1,000,000 = 0.0000146
VFCO	= .013/100 = 0.00013
VFCO ₂	= 1.826/100 = 0.01826
VFO ₂	= 17.17/100 = 0.1717

Equation 2 (Molecular Weight)

Mwt2 =
$$(0.0000146)(86) + (0.00013)(28) + (0.01826)(44) + (0.1717)(32)$$

+ $[(1-0.0000146-0.00013-0.01826-0.1717)(28)]$

Mwt2 = 28.980

Equation 3 (Calculated Performance Factor)

pf2 =
$$3099.6 \times 28.980$$

86(0.0000146)+13.89(0.00013)+13.89(0.01826)

Equation 4 (CFM Calculations)

CFM =
$$\frac{(d/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{P_V}{1.325(PB|ET+460)}} \right)$$

$$Pv = Velocity pressure in inches of H_20$$

 P_{B} =Barometric pressure in inches of mercury

Te = Exhaust temperature ${}^{o}F$

CFM =
$$\frac{(10/2)^2 \pi}{144} \left(1096.2 \sqrt{\frac{.775}{1.325(29.86/309.02+460)}} \right)$$

CFM = 2320.51

4

Equation 5 (Corrected Performance Factor)

PF2 =
$$349.927(309.02 \text{ deg } \text{F} + 460)$$

2320.51 CFM

.

.:

.

= 115,966

Fuel Specific Gravity Correction Factor

Baseline Fuel Specific Gravity - Treated Fuel Specific Gravity/Baseline Fuel Specific Gravity +1

.840 - .837 / .840 + 1 = 1.0036

PF2 = 115,966 x Specific Gravity Correction

 $PF2 = 115,966 \times 1.0036$

PF2 = 116,384

Equation 6 (Percent Change in Engine Performance Factor:)

% Change $PF = \frac{PF2 - PF1}{PF1} \times 100$

% Change PF = [(116,384 - 108,115)/108,115](100)

= +7.65

Note: A positive change in PF equates to a reduction in fuel consumption.

11.0 **APPENDIX 5**

DR. G. J. GERMANE'S RESUME'

.

Abbreviated Resume -- December 1994

Geoffrey J. Germane, Ph.D. Germane Engineering 1790 North 120 East Orem, Utah 84057

Professor and Chair, Department of Mechanical Engineering 242 CB Brigham Young University Provo, Utah 84602 (801) 378-6536

Born July 3, 1950 in Cleveland, Ohio; U.S. Citizen; Married

Appointments at Brigham Young University

Assistant Professor of Mechanical Engineering, September 1979 Associate Professor of Mechanical Engineering, September 1984 Professor of Mechanical Engineering, 1993 Chair, Department of Mechanical Engineering, BYU, August 1991 - present

Education

High School - Mayfield High School, Mayfield Village, Ohio, 1968. B.S. Mechanical Engineering - Rose-Hulman Institute of Technology, May, 1972. M.S. Mechanical Engineering - Rose-Hulman Institute of Technology, May, 1975. Ph.D. Mechanical Engineering - Brigham Young University, Apr., 1979.

Honorary and Professional Society Memberships

The Society of Sigma XI Society of Automotive Engineers Pi Tau Sigma Phi Kappa Phi American Society for Engineering Education

Honors and Awards

Pi Tau Sigma, National Mechanical Engineering Honorary
Elected to Phi Kappa Phi, 1977
Elected to Sigma Xi, 1979
BYU Sigma Xi Engineering Dissertation of the Year ,1978
Society of Automotive Engineers Teetor Award for Engineering Educators, 1981
Outstanding Young Men of America, 1981
Esquire Registry, "The Best of the New Generation," December, 1984
Outstanding Teacher, Mechanical Engineering Department, 1985-86
Outstanding Teacher, Mechanical Engineering Department, 1988-89

Related Experience and Employment

 Consultant to numerous law firms (motor vehicle accident reconstruction; automotive crash analysis and safety; industrial, power plant accident reconstruction; and mechanical design analysis), 1981 - present
 Consultant, Collision Safety Engineering, Orem, Utah (automotive crash analysis and safety;

motor vehicle accident reconstruction and design analyses; safety research), 1980 - 1991

•Board of Scientists, SEMA Foundation (automotive equipment safety specifications), 1980 - 1984

•Technical Advisory Committee, SFI Foundation (motor vehicle aftermarket and racing equipment safety specifications), 1989 - present

•Consultant, National Hot Rod Association (fuels certification supervision and safety), 1973 - present

 Consultant, UHI corporation (manufacturing, supervision of product evaluation and technical personnel), 1980 - present

Consultant, SNOWMOCROSS (engineering design), 1984

•Consultant, Health Care Group (medical products), 1981 - 1984

•Consultant, Deseret Professional (general engineering development), 1979 - 1985

•Member, Utah Legislative Committee on Alternate Fuels, 1979

•Research advisor to Collision Safety Engineering Bio-headform project, 1985-1991

Consultant, Utah Power and Light Co., 1980 - 1985

•Consultant, Carvern Petrochemical (fuel additives), 1980 - 1985

•Consultant, Hercules, Inc. (fuels evaluation supervision), 1979 - 1980

•Consultant, Public Service of New Mexico (Coal Pulverizer inerting systems), 1980

•Consultant, H.C. Sleigh, Melbourne, Australia (fuel additives evaluation procedures), 1980

•Consultant, Biomass Inc. (alcohol fuels), 1980

Consultant, Angus Chemical Co., Nitromethane combustion in engines, at BYU, 1983 - 1987
Member, Utah State Tax Recodification Task Force, member of task committee, 1988
Member, Utah Legislative Committee on Alternate Fuels, 1979

Publications

- 1. Germane, G.J., "The Effect of Acetic Acid Upon the Antiknock Properties of Methylcyclopentadienyl Manganese Tricarbonyl in Hydrocarbon Fuels," M.S. Thesis, Rose-Hulman Institute of Technology, Terre Haute, IN, December, 1974.
- 2. Germane, G.J., "Computer Controlled Dynamic Tests with Motoring of an Internal combustion Engine with Alternate Fuels," Ph.D. Dissertation, Brigham Young University, Provo, UT, December 1978.
- 3. Germane, G.J., Free, J.C., and Heaton, H.S., "General Nonlinear Dynamic Characterization of an Internal Combustion Engine Electrical Dynamometer System," Proceedings of the Tenth Annual Pittsburgh Conference, Instrument Society of America, Pittsburgh, PA, March, 1979.
- 4. Germane, G.J., and Heaton, H.S., "Dynamic Tests with Ethanol and Methanol in Hydrocarbon Fuel," Mechanical Engineering Report ER-1, Brigham Young University, Provo, UT, May, 1979.
- 5. Smoot, L.D., Germane, G.J., Cannon, J.N., and Trost, L.C., "Pulverized Coal Power Plant Fires and Explosions," Summary Report Part I, Utah Power and Light Co., Salt Lake City, UT, September, 1979.
- 6. Germane, G.J., and Heaton, H.S., "A Dynamic Engine Test Facility with Motoring Using a Digital Computer," SAE Paper 800412, Society of Automotive Engineers International Congress and Exposition, Detroit, MI, February, 1980.
- 7. Germane, G.J., Smoot, L.D., Cannon, J.N., and Trost, L.C., "Pulverized Coal Power Plant Fires and Explosions," Summary Report Part II, Utah Power and Light Co., Salt Lake City, UT, January, 1980.
- 8. Germane, G.J., and Heaton, H.S., "The Effect of Alcohol Fuels Under Dynamic Operating Conditions on Engine Efficiency and Emissions," Fourth International Symposium on Alcohol Fuels Technology, Sao Paulo, Brazil, October, 1980.
- 9. Germane, G.J., Smoot, L.D., Cannon, J.N., Cutler, R.P., and Schramm, D.E., "Pulverized Coal Power Plant Fires and Explosions," Summary Report Part III, Utah Power and Light Co., Salt Lake City, UT, April, 1981.
- 10. Cannon, J.N., Germane, G.J., Cutler, R.P. Schramm, D.E., Carr, D.G., and Smoot, L.D., "Pulverized Coal Power Plant Fires and Explosions," Summary Report Part IV, Utah Power and Light Co., Salt Lake City, UT, April, 1981.
- 11. Germane, G.J., et.al., "Coal-Water Mixture Combustion Studies in a Laboratory Cylindrical Combustor," Proceedings of the Fourth International Symposium on Coal Slurry Combustion, Orlando, FL, May, 1982.
- 12. Germane, G.J. and Parry, D.L., "Analysis of a Carbon Gasifier for International Combustion Engine Application," Utah Power and Light Co., Salt Lake City, UT, May, 1982.
- 13. Cannon, J.N., Germane, G.J., Smoot, L.D., Nye, C.N., and Spackman, H.M., "Pulverized Coal Power Plant Fires and Explosions," Summary Report Part VI, Utah Power and Light Co., Salt Lake City, UT, May, 1982.
- 14. Germane, G.J., et.al., "Reduction in Oil Use in Coal-Fired Utility Boilers," Summary Report Part VII, Utah Power and Light Co., Salt Lake City, UT, August, 1982.
- Parsons, J.B. and Germane, G.J., "Effect of an Iron-Based Combustion Catalyst on Diesel Fleet Operation," SAE Paper 831204, West Coast International Meeting, Vancouver, B.C., August, 1982. SAE Special Publication SP-548, <u>Fuel Alternatives for Spark Ignition and Diesel Engines</u>.
- Warner, C.Y., Smith, C.C., James, M.J. and Germane, G.J., "Friction Applications in Automobile Accident Reconstruction," SAE Paper 830612, Society of Automotive Engineers International Congress and Exposition, Detroit, MI, February, 1983.
- 17. Germane, G.J., "Automotive Racing Fuels A Technical Analysis and Review," SAE West Coast International Meeting, Vancouver, B.C., August, 1983.

- Germane, G.J., et.al., "Coal-Water Mixture Laboratory Combustion Studies and Computer Model Predictions," Proceedings of the Fifth International Symposium on Coal Slurry Combustion and Technology, Tampa, FL, April, 1983.
- 19. Germane, G.J., Smoot, L.D., "Reduction in Oil Use in Coal-Fired Utility Boilers," Paper 83-JPGC-Paper No. 45, Joint Power Generation Conference, Indianapolis, IN, September 26, 1983.
- 20. Germane, G.J., Smoot, L.D., and Cannon, J.N., "Inerting of Coal Pulverizers," Paper 83-JPGC-Fu-4, ASME Joint Power Generation Conference, Indianapolis, IN, September 27, 1983.
- 21. Germane, G.J. and Smoot, L.D., "Basic Combustion and Pollutant Formation Processes for Pulverized Fuels," Final Report, U.S. Department of Energy Contract No. FE 22-80PC3033306, October 31, 1983.
- 22. Germane, G.J., Hess, C.C. and Wood, C.G., "Lean Combustion in Homogeneous Charge Spark Ignition Engines--A Review," SAE Paper 831694, Society of Automotive Engineers Fuels and Lubricants Meeting, San Francisco, CA, November, 1983.
- 23. Cannon, J.N., Germane, G.J. and Smoot, L.D., "Coal Pulverizer Characteristics for Inerting Systems Design," ASME Paper 83-WA/Fu-2, Winter Annual Meeting, Boston, MA, November, 1983.
- 24. Germane, G.J., Hess, C.C. and Wood, C.G., "Lean Combustion: A Review, "Automotive Engineering, 92, no. 2, 49-54 (part 1), 1984.
- 25. Germane, G.J., Hess, C.C. and Wood, C.G., "Lean Combustion: A Review, "Automotive Engineering, 92, no. 3, 53-58 (part 2), 1984.
- 26. Rawlins, D.C., Richardson, K.H., Germane, G.J., Hedman, P.O., and Smoot, L.D., "Laboratory-Scale Combustion of Coal-Water Mixtures," Western States Section The Combustion Institute, Boulder, CO, April, 1984.
- Germane, G.J., Rawlins, D.C., Richardson, K.H., and Smoot, L.D., "Space Resolved Coal-Water Mixture Combustion and Pollutant Formation Studies in a Laboratory Scale Furnace," Proceedings of the Sixth International Symposium on Coal Slurry Combustion and Technology, Orlando, Florida, June, 1984.
- 28. Wille, M.G., and Germane, G.J., "The Conversion Process," Sidney B. Sperry Symposium, Brigham Young University, Provo, UT, January, 1985.
- 29. Germane, G.J., Smoot, L.D., Rawlins, D.C., Jones, R.G., and Eatough, C.N., "Characterization and Combustion of Low Rank Coal-Water Slurries," Proceedings of the Seventh International Symposium on Coal Slurry Fuels Preparation and Utilization, New Orleans, LA, May, 1985.
- 30. Germane, G.J., "A Technical Review of Automotive Racing Fuels," SAE Paper 852129, Society of Automotive Engineers Fuels and Lubricants Meeting, Tulsa, OK, October, 1985.
- Bush, K.C., Germane, G.J. and Hess, G.L., "Improved Utilization of Nitromethane as an Internal Combustion Engine Fuel," SAE Paper 852130, Society of Automotive Engineers Fuels and Lubricants Meeting, Tulsa, OK, October, 1985.
- 32. Rawlins, D.C., Germane, G.J., Hedman, P.O. and Smoot, L.D., "Laboratory-Scale Combustion of Coal-Water Mixtures," <u>Combustion and Flame</u>, 63: 59-72 (1986).
- Eatough, C.N., Jones, R.J., Rawlins, D.R., Germane, G.J. and Smoot, L.D., "Characterization, Spray Dispersion and Combustion of low Rank Coal-Water Slurries," Proceedings of the Pittsburgh Coal Conference, Pittsburgh, PA, September, 1985.
- 34. Germane, G.J., "A Technical Review of Automotive Racing Fuels," <u>Society of Automotive Engineers</u> <u>Transactions (1985)</u>, <u>Society of Automotive Engineers Fuels and Lubricants Journal</u>, **1**, 876-878, 1985.
- 35. Vorwaller, M.A. and Germane, G.J., "Aerodynamic Drag Studies on Rolling Vehicles by Underwater Tow Testing," <u>Society of Automotive Engineers Transactions</u>, (1986).
- 36. Warner, C.Y., Allsop, D.L. and Germane, G.J., "Frontal Structural Crush Rate Sensitivity," <u>Society of</u> <u>Automotive Engineers Transactions</u>, (1986).
- **37.** Eatough, C.N., Germane, G.J. and Smoot, L.D., "Lignite Slurry Atomizer Spray Distribution and Characterization Studies," Proceedings of the Eighth International Symposium on Coal Slurry Fuels Preparation and Utilization, Orlando, FL, May, 1986.

- 38. Rawlins, D.C., Jones, R.G., Germane, G.J., Smoot, L.D., and Paulson, L.E., "Lignite Coal Water Slurry Combustion Characteristics in a Laboratory-Scale Furnace," Proceedings of the Eighth International Symposium on coal Slurry Fuels Preparation and Utilization, Orlando, FL, May, 1986.
- 39. Rawlins, D.C., Germane, G.J. and Smoot, L.D., "Low Rank Coal-Water Fuel Combustion in a Laboratory Scale Furnace," <u>Combustion and Flame</u>, 74(3):255-266 (1988).
- 40. Rawlins, D.C., Smoot, L.D. and Germane, G.J., "Comparison of Combustion Characteristics Between Lignite-Water Slurry and Pulverized Lignite," Western States Section of the Combustion Institute, Salt Lake City, UT, April, 1988.
- 41. Eatough, C.N., Rawlins, D.C., Germane, G.J., and Smoot, L.D., "Lignite Slurry Spray Characterization and Combustion Studies," Western States Section, The Combustion Institute, Dana Point, CA, October, 1988.
- 42. Eatough, C.N., Boardman, R.D., Germane, G.J., and Smoot, L.D., "Comparison of Combustion Measurements and Model Predictions of Thermal NOx, Temperatures, Velocities and Major Species in a Swirling Natural Gas Diffusion Flame," First International Conference on Combustion Technologies for a Clean Environment, Vilamoura - Portugal, 3-6 September 1991.
- Cope, R.F., Monson, C.R., Hecker, W.C., and Germane, G.J., "Improved Temperature, Velocity and Diameter Measurements for Char Particles in Drop-Tube Reactors," Western States Section of the Combustion Institute, Los Angeles, CA, October, 1991.
- 44. Boardman, R.D., Eatough, C.N., Germane, G.J., and Smoot, L.D., "Comparison of Measurements and Predictions of Flame Structure and Thermal NOx in a Swirling, Natural Gas Diffusion Flame", <u>Combust.</u> <u>Sci. and Tech.</u> 93, 1-6, 1992.
- 45. Monson, C. R., Germane, G. J., Blackham, A. U., and Smoot, L. D., "Experimental Char Oxidation at Atmospheric and Elevated Pressures," Western States Section/The Combustion Institute, Berkeley, CA, 12 October 1992.
- 46. Pyper, D., Blackham, S., Warren, D., Hansen, L., Christensen, J., Haslam, J., Germane, G.J., and Hedman, P.O., "CARS Temperature Measurements in the BYU Controlled Profile Reactor in Natural Gas and Natural Gas-Assisted Coal Flames," Western States Section/The Combustion Institute, Berkeley, CA, 12 October 1992.
- 47. Germane, G. J., "Thrust Area 6: Model Evaluation Data and Process Strategies," *Energy & Fuels*, 7(6):906-909, November/December 1993.
- 48. Monson, C. R., and Germane, G. J., "A High Pressure Drop-Tube Facility for Coal Combustion Studies," Energy & Fuels, 7(6):928-936, November/December 1993.
- 49. Sanderson, D. K., and Germane, G. J., "Composition of Combustion Gases and Particles in a Pulverized Coal-Fired Reactor," *Energy & Fuels*, 7(6):910-918, November/December 1993.
- 50. Monson, C.R., Germane, G. J., Blackham, A. U., and Smoot, L. D., "Char Oxidation at Elevated Pressures," accepted for publication in <u>Combustion and Flame</u>.
- 51. Cope, R.F., Monson, C.R., Hecker, W.C., and Germane, G.J., "Improved Temperature, Velocity and Diameter Measurements for Char Particles in Drop-Tube Reactors," *Energy & Fuels*, 8(4):925-931, 1994.
- 52. Bateman, K.J., Germane, G.J., Smoot, L.D., and Eatough, C.N., "A Facility for High Pressure Measurement of Reaction Rates of Mm-Sized Coal," accepted for publication in *Energy & Fuels*, 1994.
- 53. Bateman, K.J., Smoot, L.D., Germane, G.J., Blackham, A.U., and Eatough, C.N., "Effect of Pressure on Oxidation Rates of Mm-Sized Char," accepted for publication in *Fuel*, 1994.
- 54. Germane, G.J., "Some Considerations Relating to Side Impact Occupant Protection and Compliance With FMVSS 214," American Bar Association, Chicago, Illinois, March, 1995.

Patents

- 1. "Nitromethane Fuel Compositions," U. S. Patent 4,583,991 granted to Geoff J. Germane and Gary L. Hess, 1986.
- 2. "Dispenser for Slender Objects, " U. S. Patent granted to Geoff J. Germane, Richard D. Ulrich and David B. Anderson, 1982.

12.0 **<u>APPENDIX 6</u>**

BAROMETRIC PRESSURE READINGS

WEATHERBANK NOW PUBLISHES A QUARTERLY NEWSLETTER! Subscribe to * * the RainMaker now for just \$10 a year! Spring issues will be * * * mailed this month! Call Customer Service for more info. + * * * THE POLLEN INDEX MAP HAS BEEN REPLACED BY A NEW ULTRAVIOLET * * INDEX MAP! Choose Custom Industrial Graphics from the menu, & * enter code #1, product G001 to select the new map. + * --- * ** ISO-GRAPHIC menu has been upgraded for version 5.0! ** * * See the HELP NEWS file for details on downloading upgrades. * WEATHERBANK MOVES! See the HELP MOVE file for our new info. * * CUSTOMER SERVICE: (M-F, 8:30 am - 6:00 pm. CT) . .405-359-0773 * * * INTERNET E-Mail Address: wxbank@thor.net INTERNET Home Page: http://www.thor.net/~wxbank * ONLINE.... +STATION FILE: WI 06-18-16 GMT DY-HR TOWN TMP DEW HUM FLK WIND GST PRSSR VSBLY-WX CLOUD COVER

 18-04P Eau Claire
 94
 62
 35
 103
 /0
 6
 BKN
 10
 OVC

 18-04P*Eau Claire
 EAU
 SP
 1608
 5
 SCT
 E10
 OVC
 21/2L-F/0608/981

 18-04P*Eau Claire
 EAU
 SP
 1620
 8
 SCT
 E10
 OVC
 21/2L-F/0608/981

 18-04P*Eau Claire
 63
 60
 90
 64
 E
 10
 29.81
 10
 10
 OVC

 18-05P
 Eau
 Claire
 64
 62
 93
 69
 E
 7
 29.81
 10
 OVC

 18-06P
 Eau
 Claire
 67
 60
 78
 70
 E
 9G16
 29.80
 15
 14
 OVC

 18-07P
 Eau
 Claire
 65
 60
 84
 69
 E
 7G17
 29.81
 15
 14
 OVC

 18-08P
 Eau
 Claire
 66
 61
 84
 71
 NE
 7
 29.81
 15
 14
 OVC

 18-09P
 Eau
 Claire
 66
 61 DY-HR TOWN TMP DEW HUM FLK WIND GST PRSSR VSBLY-WX CLOUD COVER 18-04P Rhinelander5847 E14G2129.87 3R-F6 OVC18-05P Rhinelander5847 E1429.88 3L-F6 OVC18-06P Rhinelander5850 E1029.88 3F4 OVC18-07P Rhinelander5952 E1029.88 21/2R-F4 BKN8 OVC 18-08P*Rhinelander 18-09P*Rhinelander 18-09P*Rhinelander RHI SP 2107 E7 BKN 10 OVC 5R-F 60/M/0807/987 53 NE 1129.86 6R-F7 OVC54 E1029.86 76 BKN10 OVC 18-10P Rhinelander 61 18-11P Rhinelander 61 DY-HR TOWN TMP DEW HUM FLK WIND GST PRSSR VSBLY-WX CLOUD COVER 18-04P Wausau60579059E1029.837R-7OVC18-05P Wausau61589063E729.8477OVC18-06P Wausau61589061NE929.8477OVC18-07P Wausau61599366E529.847R-7OVC18-07P Wausau61599366E529.847R-7OVC18-07P*WausauAUWSP1920E7OVC100703/984/RE18181808P7OVC18-08P Wausau61589062E829.84107OVC18-08P Wausau61589062E829.84107OVC18-08P Wausau62588760E1129.84108OVC18-09P Wausau62588765NE629.83108OVC18-10P Wausau62588765NE629.83108OVC18-11P Wausau62588764E729.82108OVC DY-HR TOWN TMP DEW HUM FLK WIND GST PRSSR VSBLY-WX CLOUD COVER _____ _____ 18-04P Mosinee57569653E1129.8210R-7OVC18-05P Mosinee57569653E1129.8377OVC

18-06P Mosinee 18-07P Mosinee 18-08P Mosinee 18-09P Mosinee 18-10P Mosinee 18-11P Mosinee	58 59 59 59 59	56 57 57 57 57	93 93 93 93 93 93	52 55 55	NE 13 E 14G20 NE 13	29.82 29.83 29.83 29.83 29.82 29.81	10 10 10 10	7 OVC 9 OVC 9 OVC 7 OVC 7 OVC 7 OVC	
DY-HR TOWN					WIND GST		VSBLY-WX		COVER
====== ===============================	=== 60		=== 100		======= NE 11		======= 11/4R-L-	3 OVC	======
18-05P Green Bay	61	60	97		NE 13		2R-L-F		
18-06P Green Bay	61	60	97		NE 14		21/4F		
18-07P Green Bay	60	60	100		NE 11	29.82		3 OVC	
18-08P Green Bay 18-09P Green Bay	61 61	60 60	97 97		NE 11 NE 10	29.81	2F 21/2F	3 OVC 5 OVC	
18-10P Green Bay	61	60	97		NE 10		21/21 2L-F		
18-11P Green Bay	62	60	93		NE 13	29.79		5 OVC	
DY-HR TOWN	TMP				WIND GST		VSBLY-WX	CLOUD	
====== ===============================	=== 59		=== 100	=== 54	====== E 17		====== 1/4R-F	======================================	
18-05P Appleton	60	60	100	54	NE 23	29.80	3/8R-F	1 X	
18-06P Appleton	60		100		NE 17	29.79	•	1 X	
18-07P Appleton	60 60	60 59	100 97		NE 17 NE 17	29.80 29.80		1 X 1 X	
18-08P Appleton 18-09P Appleton	60	59	97		NE 17	29.80		1 X	
18-09P*Appleton					X 1/2L-F C				
18-10P Appleton	60	59	97		NE 17		3/4L-F	2 X	
18-11P Appleton	60	60	100	57	NE 16	29.78	1L-F	2 X	
DY-HR TOWN					WIND GST		VSBLY-WX		COVER
	===	===	===	===		=====			
====== ===============================	=== 62 62		=== 97 97	=== 62 63	====== E 11 E 10	===== 29.77 29.78	====== 1/2F 0 1/2F	3 OVC 3 OVC	
18-04P Oshkosh 18-05P Oshkosh 18-05P Oshkosh 18-06P Oshkosh	=== 62 62 62	=== 61 61 61	=== 97 97 97	=== 62 63 63	======= E 11 E 10 E 10	===== 29.77 29.78 29.77	====== 1/2F 0 1/2F 3/4F	3 OVC 3 OVC 3 OVC 3 OVC	
18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-06P Oshkosh 18-07P Oshkosh	=== 62 62 62 62	=== 61 61 62	=== 97 97 97 100	=== 62 63 63 65	E 11 E 10 E 10 E 10 E 9	===== 29.77 29.78 29.77 29.78	======= 1/2F 0 1/2F 3/4F 1/2F	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC	
====== ===============================	=== 62 62 62 62 62	=== 61 61 62 62	=== 97 97 100 100	=== 62 63 63 65 62	E 11 E 10 E 10 E 10 E 9 NE 13	==== 29.77 29.78 29.77 29.78 29.78	======= 1/2F 0 1/2F 3/4F 1/2F 1R-F	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 1 OVC	
18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-06P Oshkosh 18-07P Oshkosh	=== 62 62 62 62	=== 61 61 62	=== 97 97 97 100	=== 62 63 65 62 66	E 11 E 10 E 10 E 10 E 9 NE 13	===== 29.77 29.78 29.77 29.78 29.78 29.77	======= 1/2F 0 1/2F 3/4F 1/2F 1R-F	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC	
<pre>====================================</pre>	=== 62 62 62 62 63	=== 61 61 62 62 62	=== 97 97 100 100 97	=== 62 63 63 65 62 66 65	E 11 E 10 E 10 E 9 NE 13 E 9	===== 29.77 29.78 29.77 29.78 29.78 29.77	1/2F 0 1/2F 3/4F 1/2F 1R-F 1R-F 0 3/4R-F 0	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC	
<pre>====================================</pre>	=== 62 62 62 62 63 63 62 TMP	=== 61 61 62 62 62 62 61 DEW	=== 97 97 100 100 97 97 97 97	=== 62 63 65 62 66 65 61	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11	===== 29.77 29.78 29.77 29.78 29.78 29.77 29.76 29.76 PRSSR	======= 1/2F 3/4F 1/2F 1R-F 1R-F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC	COVER
18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-07P Oshkosh 18-08P Oshkosh 18-09P Oshkosh 18-10P Oshkosh 18-11P Oshkosh	=== 62 62 62 62 63 63 62 TMP	=== 61 61 62 62 62 62 61 DEW	=== 97 97 100 100 97 97 97 97	=== 62 63 65 62 66 65 61 FLK ===	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 11 NE 14	===== 29.77 29.78 29.77 29.78 29.78 29.77 29.76 29.76 PRSSR	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC	COVER
<pre>====================================</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 56	=== 61 61 62 62 62 62 61 DEW === 54 54	=== 97 97 97 100 100 97 97 97 97 97 HUM === 93 93	=== 62 63 65 62 66 65 61 FLK === 53 53	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 11 NE 14 WIND GST ======= NE 9 NE 9	===== 29.77 29.78 29.77 29.78 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77	======= 1/2F 0 1/2F 3/4F 1/2F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX ======= 1/2 1/2	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC	COVER
<pre>====================================</pre>	=== 62 62 62 63 63 63 62 TMP === 56 56 57	=== 61 61 62 62 62 61 DEW === 54 55	=== 97 97 97 100 100 97 97 97 97 HUM === 93 93 93	=== 62 63 65 62 66 65 61 FLK === 53 53 56	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 11 NE 14 WIND GST ====== NE 9 NE 9 NE 9 NE 8	===== 29.77 29.78 29.77 29.78 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC	COVER
<pre>====================================</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 57 57	=== 61 61 62 62 62 61 DEW === 54 55 54	=== 97 97 97 100 100 97 97 97 97 HUM === 93 93 93 90	=== 62 63 65 62 66 65 61 FLK === 53 56 54	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ====== NE 9 NE 9 NE 9 NE 8 NE 9	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC	COVER 2 OVC
<pre>====================================</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 56 57 57 56	=== 61 61 62 62 62 62 61 DEW === 54 55 54 54	=== 97 97 97 100 100 97 97 97 97 HUM === 93 93 93 90 93	=== 62 63 65 62 66 65 61 FLK === 53 56 54 54	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ====== NE 9 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77 29.77	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 DVC 2 BKN	COVER 2 OVC 44 OVC
<pre>====================================</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 57 57	=== 61 61 62 62 62 61 DEW === 54 55 54	=== 97 97 97 100 100 97 97 97 97 HUM === 93 93 93 90	=== 62 63 65 62 66 65 61 FLK === 53 56 54	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======= NE 9 NE 9 NE 8 NE 9 NE 9 NE 9 NE 9 NE 9 NE 10 Complete Com	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC	COVER 2 OVC
<pre>====================================</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 57 57 56 57	=== 61 61 62 62 62 62 61 DEW === 54 55 54 54 54 54	=== 97 97 97 100 100 97 97 97 97 97 97 97 97 93 93 93 93 90	=== 62 63 65 62 66 65 61 FLK 53 53 54 54 58 55	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======= NE 9 NE 9 NE 8 NE 9 NE 9 NE 9 NE 9 NE 9 NE 10 Complete Com	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77 29.77 29.76	<pre>1/2F 0 1/2F 3/4F 1/2F 1R-F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX ====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 BKN 2 BKN 2 BKN	COVER 2 OVC 44 OVC 40 OVC
<pre>18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-07P Oshkosh 18-07P Oshkosh 18-09P Oshkosh 18-10P Oshkosh 18-10P Oshkosh 18-11P Oshkosh 18-11P Oshkosh 18-11P Oshkosh 18-05P Manitowoc 18-05P Manitowoc 18-05P Manitowoc 18-08P Manitowoc 18-08P Manitowoc 18-09P Manitowoc 18-10P Manitowoc 18-11P Manitowoc 18-11P Manitowoc</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 56 57 56 57 56 55 TMP	=== 61 61 62 62 62 61 DEW === 54 54 54 54 54 52 52	=== 97 97 100 100 97 97 97 97 97 97 97 97 93 93 93 90 93 90 90	=== 62 63 65 62 66 65 61 FLK 53 53 54 54 54 55 53 FLK	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======= NE 9 NE 9 NE 9 NE 8 NE 9 NE 7	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 29.76 29.76 29.77 29.77 29.77 29.77 29.77 29.77 29.75 29.75 29.75	<pre>1/2F 0 1/2F 3/4F 1/2F 1R-F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX ====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 2 BKN 4 BKN 4 OVC CLOUD	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER
<pre>18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-07P Oshkosh 18-09P Oshkosh 18-09P Oshkosh 18-10P Oshkosh 18-11P Oshkosh 18-11P Oshkosh 18-11P Oshkosh 18-05P Manitowoc 18-05P Manitowoc 18-06P Manitowoc 18-08P Manitowoc 18-08P Manitowoc 18-09P Manitowoc 18-10P Manitowoc 18-10P Manitowoc</pre>	=== 62 62 62 62 63 63 63 62 TMP === 56 56 57 56 57 56 55 TMP	=== 61 61 62 62 62 61 DEW 54 54 54 54 54 54 54 52 DEW	=== 97 97 97 100 100 97 97 97 97 97 97 97 97 97 97 97 97 97	=== 62 63 65 62 66 65 61 FLK 53 56 54 54 55 53 FLK ===	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======= NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 7 NE 7	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 29.76 29.76 29.77 29.77 29.77 29.77 29.77 29.77 29.75 29.75 29.75 29.75	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 2 BKN 4 BKN 4 OVC CLOUD	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER
<pre>====================================</pre>	=== 62 62 62 62 63 63 62 TMP === 56 57 56 57 56 57 56 57 56 57 56 57 56 57	=== 61 61 62 62 62 62 61 DEW 54 55 54 54 54 54 52 DEW === 61 61	=== 97 97 97 97 97 97 97 97 97 97 97 97 97	=== 62 63 65 62 66 65 61 FLK 53 56 54 58 55 53 FLK === 68 69	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======== NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 7 WIND GST ======= NE 7 NE 7 N 7	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77 29.77 29.77 29.75 29.75 29.75 PRSSR ===== 29.77 29.78	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 2 BKN 4 BKN 4 OVC CLOUD ====== 5 OVC 7 OVC	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER
<pre>====================================</pre>	=== 62 62 62 62 63 63 62 TMP === 56 57 56 57 56 57 56 55 TMP === 64 65 65	=== 61 61 62 62 62 62 61 DEW 54 54 54 54 54 54 54 54 52 DEW === 61 61 61	=== 97 97 97 97 97 97 97 97 97 97 97 97 97	=== 62 63 65 62 66 65 61 FLK 53 56 54 58 55 53 FLK === 68 69 68	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======= NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 7 WIND GST ====== NE 7 NE 7 NE 7 NE 9	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77 29.77 29.77 29.75 29.75 PRSSR ===== 29.75 29.75	<pre>====================================</pre>	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 4 BKN 4 OVC CLOUD ====== 5 OVC 7 OVC 7 OVC	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER
<pre>18-04P Oshkosh 18-05P Oshkosh 18-06P Oshkosh 18-07P Oshkosh 18-07P Oshkosh 18-09P Oshkosh 18-10P Oshkosh 18-10P Oshkosh 18-11P Oshkosh 18-11P Oshkosh DY-HR TOWN ====================================</pre>	=== 62 62 62 62 63 63 62 TMP === 56 57 56 57 56 57 56 57 56 55 TMP === 64 65 65 65	=== 61 61 62 62 62 62 61 DEW === 54 54 54 54 54 54 54 54 54 52 DEW === 61 61 61	=== 97 97 97 100 100 97 97 97 97 97 97 97 97 97 97 97 97 97	=== 62 63 65 62 66 61 FLK 53 56 54 58 53 FLK === 68 69 69	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======== NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 N 6 N 7 NE 7 WIND GST ======= NE 7 N 7 NE 9 NE 8	===== 29.77 29.78 29.77 29.78 29.78 29.77 29.76 29.76 29.76 29.76 29.77 29.77 29.77 29.77 29.77 29.77 29.75 29.75 PRSSR ===== 29.78 29.78 29.78 29.78	1/2F 0 1/2F 3/4F 1/2F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX ======= 1/2 1/2 1/2 5 5 4 5 4 1/2 VSBLY-WX ====== 21/2F 3F 6F 5F	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 4 BKN 4 BKN 4 OVC CLOUD 5 OVC 7 OVC 9 OVC	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER
<pre>====================================</pre>	=== 62 62 62 62 63 63 62 TMP === 56 57 56 57 56 57 56 55 TMP === 64 65 65	=== 61 61 62 62 62 62 61 DEW 54 54 54 54 54 54 54 54 52 DEW === 61 61 61	=== 97 97 97 97 97 97 97 97 97 97 97 97 97	=== 62 63 65 62 66 65 61 FLK 53 53 54 54 55 53 FLK === 68 69 69 71	E 11 E 10 E 10 E 9 NE 13 E 9 NE 11 NE 14 WIND GST ======== NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 NE 9 NE 8 N 6 N 7 NE 7 WIND GST ======= NE 7 N 7 NE 9 NE 8	===== 29.77 29.78 29.77 29.78 29.77 29.76 29.76 29.76 PRSSR ===== 29.78 29.77 29.77 29.77 29.77 29.77 29.75 29.75 PRSSR ===== 29.75 29.75	1/2F 0 1/2F 3/4F 1/2F 1R-F 0 3/4R-F 0 1/4F 0 VSBLY-WX ======= 1/2 1/2 1/2 5 5 4 5 4 1/2 VSBLY-WX ======= 21/2F 3F 6F 5F 5F	3 OVC 3 OVC 3 OVC 3 OVC 1 OVC 3 OVC 3 OVC 3 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 OVC 2 BKN 4 BKN 4 OVC CLOUD ====== 5 OVC 7 OVC 7 OVC	COVER 2 OVC 44 OVC 40 OVC 46 OVC COVER

18-10P La Crosse 18-11P La Crosse	67 62 8 66 61 8		29.78 10 29.78 8	10 OVC 10 OVC
DY-HR TOWN	TMP DEW HU	M FLK WIND GST	PRSSR VSBLY-WX	CLOUD COVER
18-04P Camp Douglas 18-05P Camp Douglas 18-06P Camp Douglas 18-07P Camp Douglas 18-08P Camp Douglas 18-09P Camp Douglas 18-10P*Camp Douglas 18-11P*Camp Douglas	62 60 9 62 60 9 63 61 9 63 60 9 62 60 9 63 59 8	3 64 E 9 3 64 E 9 3 64 NE 10 0 66 NE 8 3 63 NE 10	29.77 5L-F 29.78 5L-F 29.78 3L-F 29.78 7R- 29.78 6R- 29.79 7	5 OVC 5 BKN 13 OVC 5 BKN 11 OVC 5 SCT 12 OVC 7 SCT 12 OVC 12 OVC
DY-HR TOWN	TMP DEW HU	M FLK WIND GST	PRSSR VSBLY-WX	CLOUD COVER
18-04P Madison 18-05P Madison 18-06P Madison 18-07P Madison 18-08P Madison 18-09P Madison 18-10P Madison 18-11P Madison	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 75 E 6 74 NE 8 75 NE 7 7 75 N 8 7 69 N 14 7 69 NE 13 3 72 NE 10	29.73 2F 29.72 2F 29.73 1/2F 29.73 1/2F 29.74 1/2F 29.73 5F 29.73 10+ 29.72 10+	3 OVC 3 OVC 3 OVC 5 OVC 7 OVC 0VC 9 OVC 0VC
DY-HR TOWN	TMP DEW HU	M FLK WIND GST	PRSSR VSBLY-WX	CLOUD COVER
18-04P Janesville 18-05P Janesville 18-06P*Janesville 18-07P Janesville 18-08P Janesville 18-09P*Janesville 18-09P*Janesville	JVL SP 212	S 7 SW 7 N 8 E 11 4 M7 BKN 20 OVC	29.71 7 29.71 7 29.71 7 29.71 4F 29.71 5RF 2RW-F 0112/971	47 BKN 100 OVC 47 BKN 100 OVC 12 BKN 40 OVC 13 BKN 40 OVC
18-10P Janesville 18-11P Janesville		N 11 N 9	29.71 11/2RW-F 29.71 11/2RW-F	7 BKN 27 OVC 4 OVC
DY-HR TOWN ====== ==============================	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 62 E 6 0 64 NE 5 7 63 N 7 6 52 N 13 3 57 N 8 0 62 NE 7 3 59 N 7	PRSSR VSBLY-WX ====================================	CLOUD COVER 1 X 1 OVC 1 OVC 1 OVC 1 OVC 1 OVC 1 OVC 3 OVC 1 OVC 1 OVC
DY-HR TOWN			PRSSR VSBLY-WX	CLOUD COVER
18-04P Milwke Timme 18-05P Milwke Timme 18-06P Milwke Timme 18-06P*Milwke Timme 18-08P Milwke Timme 18-09P Milwke Timme 18-10P Milwke Timme 18-11P Milwke Timme	MWC SA 174	E 6 E 9 E 9	29.75 1/4F 29.75 1/4F 29.75 1/2R-F	0 X 0 X 1 X - X 3 OVC - X 3 OVC 1 X 1 X 0 X

19-10A Wausau 19-11A Wausau	59 60	58 97 57 90	63 NE 5 63 NE 6	29.82 11/2F 29.83 11/2F	4 OVC 3 OVC
19-11A*Wausau 19-12P Wausau	AUW 60	57 90	62 E 7	7/983 29.84 21/2F	3 OVC
19-12P*Wausau 19-01P Wausau	AUW 61	58 90	65 E 5	5/984 29.84 4F	4 BKN 8 OVC
19-02P Wausau	62 AUW			29.84 4F 5F 0000/985	4 BKN 8 OVC
19-03P Wausau 19-04P Wausau	63 63	57 81 60 90	69 E 3 71 CALM	29.86 6F 29.87 4L-F	7 BKN 15 OVC 7 OVC
19-05P Wausau 19-05P*Wausau	64 AUW			29.87 5F C 6F 0000/989	7 BKN 15 OVC
19-06P Wausau 19-07P Wausau	65 67	60 84 60 78	73 NE 3 74 NE 5	29.88 6F 29.87 7	10 BKN 15 OVC 10 BKN 15 OVC
19-08P Wausau 19-09P Wausau	68 69	60 76 61 76	76 NW 3 76 W 5	29.86 7 29.86 7	10 BKN 15 OVC 12 BKN 15 OVC
19-09P*Wausau	AUW ABV	UA/OV AU	W/TM 2154/FLU	NKN/TP PA31/SK (DVC 040/CLR
19-10P Wausau 19-11P Wausau	68 69	61 78 62 79	76 CALM 78 CALM	29.84 7 29.85 7	14 OVC 14 OVC
DY-HR TOWN	TMP ===	DEW HUM	FLK WIND GST	PRSSR VSBLY-WX	CLOUD COVER
19-05A Mosinee	57	56 96	56 NE 8	29.83 2F	2- X 3 OVC
19-06A Mosinee	57	57 100	58 NE 7	29.82 2F	2- X 3 OVC
19-07A Mosinee 19-08A Mosinee	57 57	57 100 57 100	57 NE 8 61 NE 5	29.81 2F 29.81 1/2F	2- X 3 OVC 2- X 3 OVC
19-09A Mosinee	57	57 100	61 NE 5	$29.81 \ 1/2F$ 29.81 $3/4F$	2- X 3 OVC 2- X 3 OVC
19-10A Mosinee	57	57 100	60 NE 6	29.82 1F	2- X 3 OVC 2- X 3 OVC
19-11A Mosinee	57	57 100	60 NE 6	29.82 3/4F	- X 3 OVC
19-12P Mosinee	57	57 100	60 NE 6	29.83 1F	- X 3 OVC
19-12P*Mosinee	CWA			C 2F 0506/983	
19-01P Mosinee	57	57 100	60 NE 6	29.83 3F	3 OVC
19-02P Mosinee	58	57 97	61 NE 6	29.84 4F	3 OVC
19-02P*Mosinee			AO2A M5 OVC 51		5 0110
19-03P Mosinee 19-04P Mosinee	59 61	58 97 60 97	63 NE 5 66 N 6	29.85 7 29.87 10	5 OVC 5 OVC
19-04P Mosinee	62	59 90	69 N 3	29.87 10	8 OVC
19-05P*Mosinee			AO2A M10 OVC		0 000
19-06P Mosinee	62	60 93	69 N 5	29.87 7	10 OVC
19-07P Mosinee	64		68 N 7	29.86 7	10 OVC
19-08P Mosinee	65	62 90	74 CALM	29.86 10	12 OVC
19-09P Mosinee	65	62 90	74 CALM	29.86 10	14 OVC
19-10P Mosinee	67		76 CALM	29.83 10	16 OVC
19-11P Mosinee	66	62 87	75 CALM	29.84 7	16 OVC
DY-HR TOWN			FLK WIND GST	PRSSR VSBLY-WX	CLOUD COVER
19-05A Green Bay	61	61 100	63 NE 9	29.80 2L-F	2 OVC
19-06A Green Bay	61	60 97	65 NE 7	29.79 2L-F	2 OVC
19-07A Green Bay	60	60 100	63 NE 8	29.79 1L-F	2 OVC
19-08A Green Bay	60 60	60 100 60 100	63 NE 8 63 NE 8	29.79 1L-F 29.78 11/2L-F	2 OVC 2 OVC
19-09A Green Bay 19-10A Green Bay	60 60	60 100 60 100	63 NE 8 63 NE 8	29.78 11/2L-F 29.78 1L-F	2 OVC 2 OVC
19-10A Green Bay			M1 OVC 1/2L-F		
19-11A Green Bay	60	60 100	63 N 8	29.80 1/4L-F	1 OVC
19-12P Green Bay	60		65 NE 6	29.80 1/2L-F	2 OVC
19-01P Green Bay	60		64 NE 7	29.81 1/2L-F	2 OVC
19-02P Green Bay	61	60 97	64 NE 8	29.82 11/2F	3 OVC
19-03P*Green Bay					

19-04P Green Bay 19-05P Green Bay 19-05P*Green Bay 19-06P Green Bay 19-06P*Green Bay 19-07P Green Bay 19-08P Green Bay 19-09P Green Bay 19-09P*Green Bay 19-10P Green Bay	67 63 87 GRB SP 1747 68 63 84 68 63 84 68 63 84 68 64 87	73 NE 8 29 M10 OVC 6F 0205/9 M10 OVC 6F 0205/9 M10 OVC 6F 0205/9 75 NE 7 29 76 NE 6 29 76 NE 6 29 RB 180010/TM 2155 ABV 77 N 5 29	.83 6F 984 .84 6F 1 984 .83 6F 1 .83 7 1 .82 7 1 /FLUNKN/TP UNKN .84 7 1	5 OVC 9 OVC 0 OVC 2 OVC 0 OVC /SK UNKN 2 OVC 2 OVC
-				
DY-HR TOWN			SSR VSBLY-WX === ===============	CLOUD COVER
19-05A*Appleton 19-06A*Appleton 19-07A*Appleton 19-08A*Appleton 19-09A*Appleton		·		
19-10A Appleton	58 58 100	57 N 9 29	.79 3/8L-F	1 X
19-11A Appleton	58 58 100			1 X
19-12P Appleton	58 58 100		•	1 X
19-01P Appleton	58 58 100) 53 NE 14 29 W1 X 3/4F 58/58/0		1 X
19-01P*Appleton 19-02P*Appleton	AIW SP 1300	WI A 3/4r 38/38/0	JZIZ/901	
19-03P Appleton	61 60 97	63 N 9 29	.82 2F	3 X
19-04P Appleton	62 60 93			3 OVC
19-05P Appleton	64 61 90	67 N 9 29	.84 5F	5 OVC
19-06P Appleton	64 61 90			6 OVC
19-07P Appleton	65 62 90			6 OVC
19-08P Appleton	64 62 93		AND	6 OVC
19-09P Appleton	66 62 87			6 OVC
19-10P Appleton	67 63 87 67 63 87			8 OVC 7 OVC
19-11P Appleton	0/ 05 0/	72 N 9 29	.02 /	/ 0/0
DY-HR TOWN				CLOUD COVER
19-05A Oshkosh	62 61 97			3 OVC
19-06A Oshkosh	61 61 100	63 NE 9 29	.77 2RF	3 OVC
19-07A Oshkosh	61 61 100			3 OVC
19-08A Oshkosh	61 61 100			3 OVC
19-09A Oshkosh	61 60 97			3 OVC
19-10A Oshkosh	61 60 97			3 OVC
19-11A Oshkosh	61 60 97		· · · · · · · · · · · · · · · · · · ·	3 OVC
19-12P Oshkosh	60 59 97 60 59 97			3 OVC 3 OVC
19-01P Oshkosh 19-02P Oshkosh	60 59 97 61 59 93			3 OVC
19-02P Oshkosh	61 60 97			3 OVC
19-04P Oshkosh	63 61 93			5 OVC
19-05P Oshkosh	64 61 90			7 OVC
19-06P Oshkosh	63 62 97	68 N 7 29	.84 1/4F	OVC
19-06P*Oshkosh		AO2A M5V OVC 2F		
19-07P Oshkosh	64 62 93		.83 3F	OVC
19-07P*Oshkosh		AO2A M7V OVC 2R-I	F 090/64/63/360	4/983/CIG
10 07D+0abbcab	4V10 RB21 B	CPN 0001 5 AO2A M7V OVC 3F (080/65/62/2501/	
19-07P*Oshkosh		6 PCPN 0001	100/00/03/3504/	202/010
19-08P Oshkosh	65 63 93		.83 3F 0	OVC
19-09P Oshkosh	65 63 93		.83 5F	OVC
			alla ambura anaradi. 2002a Marra	

19-10P Oshkosh 19-11P Oshkosh	66 67	63 63	90 87	73 76		29.83 29.81		7 OVC 12 OVC	
DY-HR TOWN	TMP				WIND GST		VSBLY-WX	CLOUD	
====== ===============================	=== 56	=== 54	=== 93	=== 58	====== NE 5	===== 29.76	====== 2 0	======= - X	2 OVC
19-06A Manitowoc	55	54	96	56		29.75		2 OVC	2 000
19-07A Manitowoc	55	53	93	54		29.75		- X	2 OVC
19-08A Manitowoc	56	54	93	57	N 6	29.75		- X	2 OVC
19-09A Manitowoc	56	54	93	55		29.75		- X	2 OVC
19-10A Manitowoc	55	53	93		NE 5	29.75		- X	2 OVC
19-11A Manitowoc	56	54	93	58		29.76		- X	2 OVC
19-12P Manitowoc	57	55	93	60		29.77	•	- X	2 OVC
19-01P Manitowoc 19-02P Manitowoc	58 59	56 58	93 97	59 65		29.78		- X	2 OVC
19-02P Manitowoc	59 60	58 59	97	65 64		29.78 29.78		- X - X	2 OVC 2 OVC
19-04P Manitowoc	62	61	97		NE 3	29.78	•	2 OVC	2 000
19-05P Manitowoc	64	62	93	70	NE 6	29.80		6 OVC	
19-06P Manitowoc	66	62	87	75	CALM	29.80		8 BKN	14 OVC
19-07P Manitowoc	67	63	87	77	CALM	29.79	7	13 OVC	
19-08P Manitowoc	67	63	87		NW 9	29.79	5	11 OVC	
19-09P Manitowoc	66	62	87	71		29.79		9 OVC	
19-10P Manitowoc	67	62	84		N 6	29.79		11 OVC	
19-11P Manitowoc	59	55	87	61	E 6	29.79	7	13 OVC	
DY-HR TOWN	TMP	DEW	HUM	FLK	WIND GST		VSBLY-WX	CLOUD	
	===	===	=== 90		=======				
19-05A La Crosse 19-06A*La Crosse	63	60	90	/ 1	CALM	29.82	/	10 OVC	
19-07A La Crosse	62	61	97	70	CALM	29 81	13/4L-F	4 X	
19-08A La Crosse	62	62	100	71	CALM		13/4L-F	4 X	
19-09A La Crosse	62	62	100	71	CALM		13/4L-F	4 X	
19-10A La Crosse	63	62	97	72	CALM	29.80		5 OVC	
19-11A La Crosse	63	62	97		N 6			5 OVC	
19-12P La Crosse	63	61	93		N 6	29.82		6 OVC	
19-01P La Crosse	64	61	90		N 6		21/2F	4 OVC	
19-02P La Crosse	65	62	90		NE 5	29.85	21/2F	4 OVC	
19-03P La Crosse 19-04P La Crosse	66 66	62 62	87 87	75 72	NW 6	29.87	3F 2F	6 OVC 6 OVC	
19-04P*La Crosse	LSE				DVC 4F 340		51	0 000	
19-05P La Crosse	67	63	87	75		29.88	4F	6 OVC	
19-06P La Crosse	68	63	84		NW 9	29.88		6 OVC	
19-07P La Crosse	68	63	84	72	NW 11	29.88	4H	7 OVC	
19-08P La Crosse	72	64	76	82		29.85		9 OVC	
19-08P*La Crosse	LSE				OVC 4H 34				
19-09P La Crosse				8/	N 7	29.84	4 H	11 OVC	
19-10P La Crosse	73	65	76					1 1 D TZ T	10 0110
19-11P La Crosse	73	64	74	83	W 6	29.85	4H	11 BKN	17 OVC
					W 6		4H	11 BKN 11 BKN	17 OVC 22 OVC
DY-HR TOWN	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ===== ===============================	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ====== 19-05A*Camp Douglas 19-06A*Camp Douglas 19-07A*Camp Douglas 19-08A*Camp Douglas	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ====== 19-05A*Camp Douglas 19-06A*Camp Douglas 19-07A*Camp Douglas 19-08A*Camp Douglas 19-09A*Camp Douglas	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ====================================	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ====================================	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX	11 BKN CLOUD	22 OVC COVER
DY-HR TOWN ====================================	73 72 TMP	64 65 DEW	74 79 HUM	83 83 FLK ===	W 6 N 6 WIND GST	29.85 29.86 PRSSR	4H 5H VSBLY-WX ======	11 BKN CLOUD	22 OVC COVER

10 01D+Common Doursellor									
19-01P*Camp Douglas								D	
19-02P Camp Douglas	61			7 N	5	29.84		4 OVC	
19-02P*Camp Douglas	VOK	SP 141	8 M5	OVC)4/983 (CIG RGD		
19-03P Camp Douglas	62	60 93) NW	3	29.85	3F	5 OVC	
19-04P Camp Douglas	63	61 93	3 G'	7 NW	7	29.86	4F	6 OVC	
19-05P Camp Douglas	65	62 9) 72	2 N	6	29.87	4F	9 OVC	
19-05P*Camp Douglas	VOK	SP COR	173	7 M11	LV OVC	4F 320	5/986 CIG	9V13	
19-06P Camp Douglas	66	62 8		1 N	5	29.87		OVC	
19-07P Camp Douglas	67	62 84		3 W	7	29.86		OVC	
19-08P Camp Douglas	69	63 83		5 W	8	29.85		BKN	28 OVC
19-09P Camp Douglas	70	64 83) NW	7	29.84		BKN	25 OVC
19-10P Camp Douglas	72	65 7		3 N	2	29.83		16 SCT	20 BKN
19-11P Camp Douglas	71	63 7		LΕ	5	29.83		19 SCT	25 BKN
DY-HR TOWN	TMP	DEW HUI	1 FLI	K WIN	ID GST	PRSSR	VSBLY-WX	CLOUD	COVER
		=== ==:			=====		========		
19-05A Madison	63	63 10		9 N	7	29.77		5 OVC	
19-06A Madison	62	62 10		D NW	5	29.76		3 OVC	
19-07A Madison	62	62 10		3 NW	6	29.75		OVC	
19-08A Madison	62	62 10) N	5	29.75		3 OVC	
19-09A Madison	61	61 10		5 NW	7	29.76		OVC	
19-10A Madison	61	61 10			6	29.77		OVC	
19-11A Madison	61	61 10			6	29.77		BKN	27 OVC
19-12P Madison	62	62 10			8	29.78		OVC	27 070
19-01P Madison	63	62 9		L NW	5	29.80		5 OVC	
19-02P Madison	64	62 93		D N	6	29.81		7 OVC	
19-03P*Madison	04	02).	, ,		0	20.01	TOL	/ 0/0	
19-04P Madison	64	62 93	2 7	2 NW	5	29.83	10+	OVC	
19-05P Madison	66	63 9		2 NW	8	29.83		BKN	21 OVC
19-06P Madison	66	63 9		3 N	7	29.84		OVC	21 0/0
19-07P Madison	66	63 9		3 N	, 7	29.84		9 BKN	18 OVC
19-07P*Madison							39 OVC 10		
19-07F Madison		05/983	L AU			ZO DIG	55 OVC I	J+ 100/01	705
19-08P Madison	70								
		65 8/	L 8.	1 N	6	29 83	10+	13 BKN	30 010
		65 84 SP 201		LN ZZM1		29.83		13 BKN	30 OVC
19-08P*Madison	MSN	SP 201	2 AO2	2A M1	L5 OVC	10+ 10	0/69/65/30	505/983	30 OVC
19-08P*Madison 19-09P Madison	MSN 71	SP 2012 66 84	2 AO2 4 83	2A M1 3N	L5 OVC 7	10+ 10 29.83	0/69/65/30 10+	505/983 15 OVC	30 OVC
19-08P*Madison 19-09P Madison 19-10P Madison	MSN	SP 201	2 AO2 4 83	2A M1	L5 OVC	10+ 10	0/69/65/30 10+	505/983	30 OVC
19-08P*Madison 19-09P Madison	MSN 71	SP 2012 66 84	2 AO2 4 83	2A M1 3N	L5 OVC 7	10+ 10 29.83	0/69/65/30 10+	505/983 15 OVC	30 OVC
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison	MSN 71 70	SP 2013 66 84 66 85	2 AO2 4 83 7 82	2A M1 3 N 2 N	15 OVC 7 6	10+ 10 29.83 29.82	0/69/65/30 10+ 10+ 10+	505/983 15 OVC 19 OVC	
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ 10+	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M1 3 N 2 N K WIN	IS OVC 7 6 ND GST	10+ 10 29.83 29.82 PRSSR	0/69/65/30 10+ 10+ VSBLY-WX	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FLI	2A M3 3 N 2 N K WIN = ===	15 OVC 7 6 10 GST	10+ 10 29.83 29.82 PRSSR =====	0/69/65/30 10+ 10+ VSBLY-WX =======	505/983 15 OVC 19 OVC CLOUD ======	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = ===	15 OVC 7 6 10 GST =====	10+ 10 29.83 29.82 PRSSR =====	0/69/65/30 10+ 10+ VSBLY-WX =======	505/983 15 OVC 19 OVC CLOUD	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 84 66 85 DEW HUI	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === NW OVC	6 1F 330	10+ 10 29.83 29.82 PRSSR ===== 29.77 05/977	0/69/65/30 10+ 10+ VSBLY-WX =======	505/983 15 OVC 19 OVC CLOUD =======	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW	6 1F 330 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 05/977 29.77	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F	505/983 15 OVC 19 OVC CLOUD ======== 7 OVC 3 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW NW	6 1F 3 15 330 9 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 05/977 29.77 29.79	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW	6 1F 3 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 05/977 29.77 29.79 29.81	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC 7 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW NW NW NW	6 7 6 1F 330 9 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 05/977 29.77 29.79 29.81 29.82	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F 4F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0 0VC NW NW NW W W	6 1F 3 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 05/977 29.77 29.79 29.81	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 2F 21/2F 4F 4F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC 7 OVC 9 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === NW OVC NW NW NW W NW	6 7 6 1D GST ===== 9 9 9 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 05/977 29.77 29.79 29.81 29.82 29.83	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F 4F 4F 4F 5F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC 7 OVC 9 OVC 11 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW NW NW NW NW NW	L5 OVC 7 6 JD GST ===== 9 9 9 9 9 9 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 29.77 29.77 29.79 29.81 29.82 29.83 29.83	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F 4F 4F 4F 5F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC 7 OVC 9 OVC 11 OVC 12 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ===== ===============================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW NW NW NW NW NW	L5 OVC 7 6 JD GST ===== 9 9 9 9 9 9 9 9 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 29.77 29.77 29.79 29.81 29.82 29.83 29.83	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F 4F 4F 4F 5F 5F 5F	505/983 15 OVC 19 OVC CLOUD ======= 7 OVC 3 OVC 5 OVC 7 OVC 9 OVC 11 OVC 12 OVC	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = === 0VC NW NW NW NW NW NW NW NW	15 OVC 7 6 10 GST ===== 9 9 9 9 9 9 9 9 9 9 10 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 29.77 29.77 29.79 29.81 29.82 29.83 29.83 29.83	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 1F 2F 21/2F 4F 4F 4F 5F 5F 5F 5F	505/983 15 OVC 19 OVC CLOUD 	COVER
19-08P*Madison 19-09P Madison 19-10P Madison 19-11P*Madison DY-HR TOWN ====================================	MSN 71 70 TMP ===	SP 2012 66 8 66 8 DEW HUI === ==	2 AO2 4 83 7 82 4 FL1 = ===	2A M3 3 N 2 N K WIN = ===	15 OVC 7 6 10 GST ===== 9 9 9 9 9 9 9 9 9 9 10 9	10+ 10 29.83 29.82 PRSSR ===== 29.77 29.77 29.77 29.79 29.81 29.82 29.83 29.83 29.83	0/69/65/30 10+ 10+ VSBLY-WX ======= 1F 2F 21/2F 4F 4F 4F 5F 5F 5F 5F 5F	505/983 15 OVC 19 OVC CLOUD ======== 7 OVC 3 OVC 3 OVC 5 OVC 7 OVC 9 OVC 11 OVC 12 OVC 13 OVC 13 OVC	COVER

19-11P JanesvilleNW929.835F19-11P*JanesvilleJVL SA 2259M16OVC5F3308/983 NW 9 29.83 5F

16 OVC

DY-HR	TOWI	N	TMP	DEW	HUM	FLK	WIND GST	PRSSR	VSBLY-WX	CLOUD	COVER
		=====	===	===	===	===	=======			========	
19-05A	Milwke	Mitch	54	54	100	58	N 3	29.76	1/4F	1 BKN	6 OVC
19-06A	Milwke	Mitch	55	54	96	57	N 5	29.74	1/4F	1 OVC	
19-07A	Milwke	Mitch	56	55	96	61	CALM	29.74	1/4F	3 OVC	
19-08A	Milwke	Mitch	56	55	96	61	CALM	29.74		3 OVC	
19-09A	Milwke	Mitch	58	56	93	63	CALM	29.74	•	3 OVC	
	Milwke			55	93		CALM	29.75		3 OVC	
	Milwke		58	56	93		CALM	29.76		3 OVC	
	Milwke		57	56	96	59		29.76		3 OVC	
	Milwke		58	56	93	60		29.78		1 OVC	
	Milwke		59	57	93		CALM	29.79		3 BKN	8 OVC
	Milwke		00	5,	20	00		23.15	±/21	5 DIG	0 010
	Milwke		62	58	87	64	NE 7	29.80	З	8 OVC	
	Milwke		61	58	90		NE 6	29.82		8 OVC	
	Milwke		61	57	87		NE 9	29.82		8 OVC	
	Milwke		61	58	90		NE 6	29.82		2 SCT	8 OVC
	Milwke			60	87		CALM	29.82		6 OVC	8 UVC
	Milwke			60	90	67		29.82		6 OVC	
	Milwke			62	87		CALM	29.81		6 OVC	
	Milwke					75					
19-115	MITAKe	MILCU	63	61	93	70	E 5	29.81	1/2F	6 OVC	
DY-HR	TOWI	V	тмр	DEM	нтм	ਸ.17	WIND GST	DRGGR	VSBLY-WX	CLOUD	COVER
							WIND G51		V3BB1=WX		
	*Milwke										
	Milwke										
	Milwke										
	Milwke										
	Milwke										
	Milwke										
	Milwke										
	Milwke						CALM	20 70	1 17	v	
	Milwke						CALM	29.78		- X - X	2 OVC
								29.79			1 OVC
	Milwke		60			F 0	CALM		11/2F	2 OVC	
	Milwke		62				NW 6		11/2F	3 OVC	
	Milwke		63			63	CALM	29.81	3 F	3 OVC	
	Milwke		66			~ ~	OD T M	20 02	11/00	6 0170	
	Milwke		66				CALM		11/2F	6 OVC	
	Milwke		66			64			11/2F	6 OVC	
	Milwke		67			62		29.83		6 BKN	9 OVC
	Milwke		67				NE 8	29.82		7 OVC	
	Milwke		68				NW 7	29.82		7 OVC	
19-11P	Milwke	Timme	68			64	N 8	29.83	3F	9 OVC	
			(T) / T)	D TT 7	T TT TN #	***	HIND COT	DDGGT			001775
DY-HR	TOWI						WIND GST		VSBLY-WX	CLOUD	
	======			===			======		=======		
	Sturged	-		53	90	54		29.82		- X	2 OVC
	Sturged	-	56	53	90	54		29.81		- X	1 OVC
	Sturged	-	57	54	90		NE 6	29.81		- X	2 OVC
	Sturged		57	54	90		NE 3	29.81	•	- X	1 OVC
	Sturged		58	55	90		NE 6	29.80	· · ·	- X	1 OVC
	Sturged		57	54	90		NE 6	29.80		- X	1 OVC
	Sturge		57	54	90		NE 6	29.81		- X	1 OVC
	Sturged		57	54	90	58		29.82		- X	1 OVC
	Sturged		57	55	93	59	NE 6	29.82		2 OVC	
	Sturge	-	58	55	90	61	NE 5	29.82		- X	1 OVC
19-03P	Sturge	on Bay	60	57	90	66	CALM	29.83	4	2 OVC	

19-04P Sturgeon Bay 19-05P Sturgeon Bay 19-06P Sturgeon Bay 19-07P Sturgeon Bay 19-08P Sturgeon Bay 19-09P Sturgeon Bay 19-10P Sturgeon Bay 19-11P Sturgeon Bay		57 56 55 56 55 54 54	90 90 87 87 87 90 90	60 62 57 60 58	N 10 N 8 N 9 N 8	29.83 29.85 29.85 29.85 29.84 29.84 29.85 29.84	4 7 5 7 7 5	3 OVC 2 OVC 4 SCT 17 OVC 2 OVC
DY-HR TOWN	TMP	DEW	HUM	FLK	WIND GST	PRSSR	VSBLY-WX	CLOUD COVER
19-05A*Rice Lake 19-06A*Rice Lake 19-07A*Rice Lake 19-08A*Rice Lake 19-09A*Rice Lake 19-09A*Rice Lake 19-10A*Rice Lake 19-11A*Rice Lake 19-12P*Rice Lake 19-01P*Rice Lake 19-02P*Rice Lake 19-03P*Rice Lake 19-05P*Rice Lake 19-06P*Rice Lake 19-06P*Rice Lake 19-08P*Rice Lake 19-09P*Rice Lake 19-09P*Rice Lake 19-09P*Rice Lake								
DY-HR TOWN					WIND GST		VSBLY-WX	CLOUD COVER
19-05A*Waukesha 19-06A*Waukesha 19-07A*Waukesha 19-08A*Waukesha 19-09A*Waukesha 19-10A*Waukesha								
19-11A Waukesha 19-12P Waukesha	61 61			61	CALM CALM	29.77	3/4L-F 3/4L-F	3 OVC
19-01P Waukesha 19-01P*Waukesha 19-02P Waukesha 19-03P Waukesha 19-04P Waukesha 19-05P Waukesha 19-06P Waukesha 19-08P Waukesha 19-08P Waukesha 19-10P Waukesha 19-11P Waukesha	62 UES 64 65 65 66 67 67	SP 1	.328	62 64 65 63 60 60 61 60	N 6 CALM CALM CALM NW 6 NW 6 NW 11 NW 11 NW 11 NW 11 NW 11 NW 11	29.80 29.81 29.82 29.83 29.83 29.83 29.84 29.84	1/2F 5/8F 11/2F 2F 21/2F 11/2F 21/2F 21/2F 4F	 3 OVC 1 X 3 X 3 OVC 4 OVC 4 OVC 4 OVC 5 OVC 5 OVC 5 OVC 5 OVC 6 OVC

STATION FILE: WI DY-HR TOWN	TMP	19-05 G DEW HU === ==	M F		ID GST		VSBLY-WX =======			COVER
19-05A Eau Claire 19-05A*Eau Claire	64 EAU	60 8 SP 053	7 4 7	68 E SCT N	7 111 OVC	29.83 10 07	15 08/983	11	SCT	14 OVC
19-06A Eau Claire 19-07A Eau Claire	64 63			67 E 71 NE	8 3	29.82 29.82			SCT SCT	11 OVC 11 OVC
19-07A Eau Claire	63			67 E	3 7	29.82			SCI	12 OVC
19-08A*Eau Claire	EAU	SP 083		OR 10		2 OVC	10 0505/98	32		
19-09A Eau Claire	63			68 NE	6	29.82			SCT	13 OVC
19-10A Eau Claire 19-11A Eau Claire	62 62			69 N 67 NE	5 6	29.81 29.82			SCT SCT	13 OVC 12 OVC
19-11A*Eau Claire	EAU	SP 113				05/983	10	ΤŪ	BCI	12 000
19-12P Eau Claire	63	60 9	0	68 E	6	29.83			OVC	
19-01P Eau Claire	63			70 E	5	29.84		10	BKN	20 OVC
19-01P*Eau Claire 19-01P*Eau Claire	EAU EAU				22 OVC		05/984 704/985			
19-02P Eau Claire	64			69 NE	6	29.84		10	BKN	22 OVC
19-03P Eau Claire	66			74 CAI		29.86			OVC	
19-04P Eau Claire	68			74 NW	6		15		BKN	20 OVC
19-05P Eau Claire 19-06P Eau Claire	69 70			77 N 79 N	6 7	29.87 29.89			OVC	
19-06P Eau Claire	70			79 N 81 N	7	29.89			OVC BKN	32 BKN
19-08P Eau Claire	73			83 N	6	29.85			BKN	52 DIG
19-08P*Eau Claire	EAU					03/982				
19-09P Eau Claire	75			85 E	5	29.81			BKN	
19-10P Eau Claire 19-11P Eau Claire	75 74			86 NW 84 NE	6 3	29.84 29.84			OVC BKN	
19-11P Lau Claire	/4	04 /	т (04 NE	5	27.04	12	29	BUN	
DY-HR TOWN	TMP ===	DEW HU === ==					VSBLY-WX		LOUD	COVER
				== ===		====		====	=====	
19-05A*Rhinelander 19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander								===:	= = = = =	
19-06A*Rhinelander 19-07A*Rhinelander	RHI						======= 508/984/CI			
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander	58		5 E	3 OVC 54 E	11/2F 7	57/M/00 29.84	608/984/CI 3/4F	G RC 3	GD F1 OVC	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander	58 59		5 E	3 OVC 54 E 59 E	11/2F 7 3	57/M/00 29.84 29.84	508/984/CI 3/4F 3F	.G R(3 2	GD F1 OVC BKN	
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander	58 59 59		5 E	3 OVC 54 E 59 E 53 NE	11/2F 7 3 9	57/M/00 29.84 29.84 29.85	508/984/CI 3/4F 3F 7	CG RC 3 2 3	GD F1 OVC BKN OVC	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander	58 59		5 E	3 OVC 54 E 59 E	11/2F 7 3	57/M/00 29.84 29.84	508/984/CI 3/4F 3F 7 7	CG RC 3 2 3	GD F1 OVC BKN	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-04P Rhinelander	58 59 59 60 60	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE	11/2F 7 3 9 6 7 5	57/M/00 29.84 29.84 29.85 29.85 29.85 29.86 29.88	608/984/CI 3/4F 3F 7 7 6F 6F	G RC 3 2 3 3 3 3 3 3	GD FI OVC BKN OVC OVC OVC OVC	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-04P Rhinelander 19-05P Rhinelander	58 59 60 61 62	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI	11/2F 7 3 9 6 7 5	57/M/00 29.84 29.84 29.85 29.85 29.85 29.86 29.88 29.88 29.89	608/984/CI 3/4F 3F 7 7 6F 6F 6F 7	CG RC 3 2 3 3 3 3 5	GD FI OVC BKN OVC OVC OVC OVC OVC	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-04P Rhinelander 19-05P Rhinelander 19-06P Rhinelander	58 59 60 61 62 63	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI	11/2F 7 3 9 6 7 5 .M	57/M/00 29.84 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89	508/984/CI 3/4F 3F 7 7 6F 6F 7 7	CG RC 3 2 3 3 3 3 5 6	GD FI OVC BKN OVC OVC OVC OVC OVC OVC	IRST 6 OVC
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander	58 59 60 61 62 63 67	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N	11/2F 7 3 9 6 7 5 .M .M .M 3	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.88 29.89 29.89 29.88	508/984/CI 3/4F 3F 7 7 6F 6F 7 7 6H	CG RC 3 2 3 3 3 3 5 6 9	GD FI OVC BKN OVC OVC OVC OVC OVC OVC BKN	IRST
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-04P Rhinelander 19-05P Rhinelander 19-06P Rhinelander	58 59 60 61 62 63	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI	11/2F 7 3 9 6 7 5 .M .M .M 3	57/M/00 29.84 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89	508/984/CI 3/4F 3F 7 7 6F 6F 7 7 6H 7	G R 3 3 3 3 3 3 5 6 9 15	GD FI OVC BKN OVC OVC OVC OVC OVC OVC	IRST 6 OVC
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander 19-08P Rhinelander	58 59 60 61 62 63 67 68	SP 094	5 E	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N 68 CAI	11/2F 7 3 9 6 7 5 .M .M 3 .M 5	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89 29.88 29.88	508/984/CI 3/4F 3F 7 6F 6F 7 7 6H 7 7	G R 3 3 3 3 3 3 5 6 9 15 15	GD FI OVC BKN OVC OVC OVC OVC OVC BKN OVC	IRST 6 OVC
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-08P Rhinelander 19-08P Rhinelander 19-09P Rhinelander 19-10P*Rhinelander 19-11P Rhinelander	58 59 60 61 62 63 67 68 68 68 68	SP 094	5 E 0 M F	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N 68 CAI 67 NE 68 CAI 68 CAI 14 WIN	11/2F 7 3 9 6 7 5 .M .M 3 .M 5 .M	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89 29.88 29.88 29.88 29.88 29.88 29.87 29.85 PRSSR	508/984/CI 3/4F 3F 7 6F 6F 7 6H 7 6H 7 10 VSBLY-WX	G R 3 2 3 3 3 5 6 9 15 15 15	D FI OVC BKN OVC OVC OVC OVC OVC BKN OVC OVC OVC	IRST 6 OVC 15 OVC COVER
19-06A*Rhinelander 19-07A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander 19-08P Rhinelander 19-09P Rhinelander 19-10P*Rhinelander 19-11P Rhinelander	58 59 60 61 62 63 67 68 68 68 68	SP 094	5 E 0 M F	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N 68 CAI 67 NE 68 CAI 68 CAI 14 WIN	11/2F 7 3 9 6 7 5 .M .M 3 .M 5 .M	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89 29.88 29.88 29.88 29.88 29.88 29.87 29.85 PRSSR	508/984/CI 3/4F 3F 7 6F 6F 7 7 6H 7 7 10	G R 3 2 3 3 3 5 6 9 15 15 15	D FI OVC BKN OVC OVC OVC OVC OVC BKN OVC OVC OVC	IRST 6 OVC 15 OVC COVER
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander 19-08P Rhinelander 19-08P Rhinelander 19-10P*Rhinelander 19-11P Rhinelander 19-11P Rhinelander	58 59 60 61 62 63 67 68 68 68 7MP ===	SP 094 60 10 DEW HU	5 E 0 M F = =	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N 68 CAI 67 NE 68 CAI 67 NE 68 CAI 14 WIN == ==	11/2F 7 3 9 6 7 5 M 3 M 3 M 5 M 1D GST	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89 29.88 29.88 29.88 29.88 29.87 29.85 PRSSR =====	508/984/CI 3/4F 3F 7 6F 6F 6F 7 6H 7 10 VSBLY-WX =======	G RC 3 2 3 3 3 3 5 6 9 15 15 15 15 15	OVC BKN OVC OVC OVC OVC OVC OVC BKN OVC OVC OVC	IRST 6 OVC 15 OVC COVER
19-06A*Rhinelander 19-07A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-05P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander 19-08P Rhinelander 19-09P Rhinelander 19-10P*Rhinelander 19-11P Rhinelander	58 59 60 61 62 63 67 68 68 68 68	SP 094 60 10 DEW HU === == 58 9	5 E 0 M F: = == 7	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 63 CAI 67 N 68 CAI 67 NE 68 CAI 68 CAI 14 WIN	11/2F 7 3 9 6 7 5 .M .M 3 .M 5 .M	57/M/00 29.84 29.85 29.85 29.85 29.86 29.89 29.89 29.89 29.88 29.88 29.88 29.87 29.85 PRSSR ===== 29.83	508/984/CI 3/4F 3F 7 6F 6F 7 6H 7 6H 7 10 VSBLY-WX	G R 3 2 3 3 3 5 6 9 15 15 15	D FI OVC BKN OVC OVC OVC OVC OVC BKN OVC OVC OVC	IRST 6 OVC 15 OVC COVER
19-06A*Rhinelander 19-07A*Rhinelander 19-08A*Rhinelander 19-09A*Rhinelander 19-09A*Rhinelander 19-10A*Rhinelander 19-11A Rhinelander 19-12P Rhinelander 19-01P Rhinelander 19-02P Rhinelander 19-03P Rhinelander 19-04P Rhinelander 19-05P Rhinelander 19-06P Rhinelander 19-07P Rhinelander 19-08P Rhinelander 19-08P Rhinelander 19-10P*Rhinelander 19-11P Rhinelander 19-11P Rhinelander 19-05A*Wausau 19-06A Wausau	58 59 60 61 62 63 67 68 68 68 7MP ===	SP 094 60 10 DEW HU === == 58 9 58 9 58 9	5 E 0 M F = = 7 7 7	3 OVC 54 E 59 E 53 NE 57 E 64 NE 59 NE 62 CAI 67 N 68 CAI 67 NE 68 CAI 67 NE 68 CAI LK WIN == ===	11/2F 7 3 9 6 7 5 .M .M 3 .M 5 .M 1D GST ======	57/M/00 29.84 29.85 29.85 29.85 29.86 29.88 29.89 29.89 29.88 29.88 29.87 29.85 PRSSR ===== 29.83 29.82 29.82	508/984/CI 3/4F 3F 7 6F 6F 6F 7 7 6H 7 10 VSBLY-WX ======= 11/4L-F	G RC 3 2 3 3 3 3 5 6 9 15 15 15 15 15 2	GD FI OVC BKN OVC OVC OVC OVC OVC OVC OVC OVC OVC OVC	IRST 6 OVC 15 OVC COVER

DY-HR TOWN		HUM FLK	WIND GST	PRSSR VSBLY-WX	CLOUD COVER
18-04P Sturgeon Bay 18-05P Sturgeon Bay 18-06P Sturgeon Bay 18-07P Sturgeon Bay 18-08P Sturgeon Bay 18-09P Sturgeon Bay	56 53 55 52 56 53 58 54 60 56 61 57	90 52 90 47 90 49 87 53 87 56 87 57	NE 10 NE 13 NE 14G21 NE 11G21 E 13G18 E 15G25	29.85 2 29.85 2 29.85 3 29.84 5 29.84 7 29.83 7	- X 2 OVC - X 2 OVC 3 OVC 4 OVC 5 SCT 15 OVC 19 BKN
18-10P Sturgeon Bay 18-11P Sturgeon Bay	60 55 59 55	84 58 87 53		29.83 7 29.82 7	19 OVC 6 SCT 19 OVC
DY-HR TOWN ====== 18-04P*Rice Lake 18-05P*Rice Lake 18-06P*Rice Lake 18-07P*Rice Lake 18-08P*Rice Lake 18-09P*Rice Lake 18-10P*Rice Lake 18-11P*Rice Lake			WIND GST	PRSSR VSBLY-WX	CLOUD COVER
DY-HR TOWN			WIND GST	PRSSR VSBLY-WX	CLOUD COVER
18-04P Waukesha 18-05P Waukesha 18-06P Waukesha 18-07P Waukesha 18-08P*Waukesha 18-09P Waukesha 18-10P Waukesha 18-11P Waukesha	63 63 63 63 62 62 60	57 57 58 57 56 56	NE 9 NE 9	29.74 1/16F 29.74 1/8L-F 29.74 3/4L-F 29.73 3/4R-F 29.73 6F 29.73 21/2F 29.73 1/8F	0 X 0 X 2 OVC 3 OVC 5 OVC 4 OVC 0 X
DY-HR TOWN ====================================			WIND GST	PRSSR VSBLY-WX	CLOUD COVER

- 18-09P*Phillips 18-10P*Phillips 18-11P*Phillips

UG-1996 MOUNTAIN STANDARD TIME

. . .

- ----

.....

.....

D-HH-MM	TOV	ØN	TMP	DPT	HUM	FLK	wth		GST	BRMTR	VIS	WEATH	IER	MAX	MIN
4-00-45															
.4-01-45															
.4-02-45	Milwke	Timmer													
.4-03-45	Milwke	Timmer													
.4-04-45	Milwke	Timmer													
.4-05-45	Milwke	Timmer													
.4-07-00	Milwke	Timmer					SW	7		29.96	52	prtly	cldy		
.4-07-50	Milwke	Timmer					SW	14		29.96	52	prtly	cldy		
_4-08-50	Milwke	Timmer					W	14		29.96	52	prtly	cldy		
L4-09-50	Milwke	Timmer					W	18		29.95	52	mstly	cldy		
L4-10-50	Milwke	Tinmer					SW	11		29.94	68	prtly	cldy		
14-11-50	Milwke	Timmer					W	14		29.94	68	fair			
L4-12-50	Milwke	Timmer					SW	14		29.93	100	prtly	cldy		
L4-13-50	Milwke	Timmer					M	16		29.92	100	mstly	cldy		
14-14-50	Milwke	Timmer					W	14		29.91	100	mstly	cldy		
14-15-50	Milwke	Timmer					NW	17		29.91	100	mstly	cldy		
14-16-45	Milwke	Timmer													
14-17-50	Milwke	Timmer					NW			29.91	180	prtly	cldy		
14-18-50	Milwke	Timmer					NW	11		29.92	TAN	prtly	cluy		
14-19-50	Milwke	Timmer					M	11		29.92	180	mstly	cldy		
14-20-50	Milwke	Timmer					NW	8		29.93	180	mstly	cldy		
14-21-45	a contract the second														
14-22-45	they have more the														
14-23-45	Milwke	Timmer													

13.0 **APPENDIX 7**

CARBON BALANCE TEST DATA

.

			Larb	on Mass B	alance F	iela Da	la rorm	LAILIC	0114 1001					
	Com Test	pany: <u>Wis-</u> Portion: Ba	CervTral	Location: <u><i>JTE</i></u> Treate	<u>ven's foin</u> T ed: <u>X</u>	Test I Exhaust S	Date: <u></u> Stack Diam	1 <u>4-9</u> [neter: <u>12"</u>]	Inches					
			odel: <u>FMB-1</u> ient: <u>51</u>		Miles/H	ours:	I.D.#:	1550	<u>/550</u>					
	Fuel	Specfic Gr	avity:	853	@: (°F)									
			ssure:	in	ches of Me	rcury		Start Tir	me: <u>1.15</u>					
OIL	P	RPM	Exhaust Temp 2E	P Inches	%-CO	HC_+ ppm	% CO ₂	% O ₂	NO, ENG RACK SETTING	AMPS	Vol			
33 FSI	1460	320.4 PPR 404.4 2	251.8	1.6	01	13	1.43	19.0	1.60-	344	232			
		2	254.2	1.6	01	15	1.45	19.1						
n		2	253.0	1.6	01	13	1.40	19.3						
v		2	253.4	1.5	01	13	1.38	19.3						
<u>R-2</u>	R-2	2	256.0	1.5	01	13	1.41	19.3	r.	R-2	R-,			
18 151	1470	<u>578 K</u> 4	480.6	4.4	01	. 13	3,40	173	1.30	760	57			
		,, 	483.4	4.4	01	13	3,38	17.2	-					
		4	487.0	4.4	01	17	3.34	1 17.3	2	_				
	ł	· 4	485.0	4.3	01	17	3.31	17.3						
<u>R-4</u>	R. 4	4	486.6	. 4.3	01	17	3.33	3 17.3	3	R-4	R-1			
	Hen's C e Air	рен	Nai	mes of Custor	mer Perso	<i>O'PACI</i> nnel Part	<i>TY C R</i> icipating i	n Test: k	BACK = (PACK-Z = (PACK-Y = (a) Lih				

Signature of Technicians:

	Fuel	Specfic G	ravity:		@:(°F)							
		ometric Pre	essure:	ir	nches of M	ercury		Start Time:				
C L L	Pyr Teomp	RPM .	Exhaust Temp °F	P Inches of H ₂ O	%-CO	HC ppm	% CO ₂	% O ₂	NOr	AMPS	VOL	
50 PSJ	157°	121.6 6	674.8	6.7	03	19	4.44	160	1.09	992	66	
		6	678.0	6.7	02	17	4.41	16.0		•.		
		4	682.6	6.7	02	19	4.40	16.0				
		6	685.8	6.7	03	19	4.53	15.9				
R-6	R-4	6	685.4	6.7	02	19	4.51	16.0		R-6	R-	
e		8	-									
		8										
	:	8										
		- 8								1		
R-8	R-8	8								R-8	R-	

Signature of Technicians:

	Carbon Mass Balance Field Data Form Company: Whise Contract Location: STEVEN'S POINT Test Date: 6-19-96													
	Test	Portion: B	laseline: X	Treat	ed:	Exhaust	Stack Dian	neter: 12	Inches					
	Engi Type	ne Make/M e of Equipn	10del: <u>EMB-</u> nent:	12 Cyl	Miles/H	lours:	I.D.#:	1550						
	Fuel Specific Gravity: $-\frac{835}{853}$ @:(°F)													
Barometric Pressure: inches of Mercury Start Time: 8:20 Pm														
^{cssu} ne	Py To Temp	RPM	Exhaust Temp 9E	P Inches of H ₂ O	%-CO	HC ppm	% CO ₂	% O2	NO. ENG-DICIC SCTTINE	Am PS	VOLTS			
5	, 5 3 1	2	328 RPM 402 RPM 267.4	RGG 10 R-2 1.8	:01	17	1.51	18.7	1.60	320	S OY			
s 1	ک	2	268.6	1.8	. 01	17	1.51	18.8		•.				
	· p.	2	268.8	1.4	.01	15	1.46	18.8						
		2	269.0	1.6	.01	15	1.46	18.8	-					
R·2	R·2		269.6	1.6	.01	15	1.50	18-8		R.2	R.2			
46 D	1.4	580	477.L	4.6	. 02	. 18	3.48	16.4	[.30	725	575			
PS1	7	4	481.2	4.6	. 02	18	3,48	16.4						
•		4	486.6	4.6	. 02	18	3.51	16.3		_				
		· 4	489.2	4.6	. 02	18	3.50	16.3						
7-4	R-4	4	491.8	4.4	,02		3.49		-	R-4 .	R-4			
	itters ic A	5 Open	y Nan	ies of Custon	or ner Person	<i>PACIT</i> inel Parti	Y REG cipating in	Test: RA	z = c	12				
1101		iic Ma	ard Ause	h	_ fer	in the	ihe			5) 2				
		Par	g Ffina	las &)			nem l	S/ u	ΨZ					
			y han	- 0					FPC X	heat Jak	à			
		Tus	- weithe					/						

			Carb	on Mass B	alance b	ield Da	ta Form	Carbon Mass Balance Field Data Form Company: Wise CENTRAL Location: STEVEN'S POINT Test Date: 6-19-96 "													
	Comp Test	pany: <u>\//s</u> Portion: E	aseline: X	Location: <u>57</u> Treat	ed:	Exhaust	Date: <u>6-1</u> Stack Diam	<u>9-96</u> neter: <u>12</u>	Inches	÷.											
	Engi Type	ne Make/N of Equipt	1odel: <u>EMB</u> nent: CC	- 12 Cyl	Miles/H	lours:	I.D.#:	1550													
	Fuel	(°F)																			
		metric Pre	essure:	Start Time: 8:20 PM																	
1 5440	Ry Ten p	RPM	Exhaust Temp ?F	P Inches of H ₂ O	%-C0	HC ppm	% CO ₂	% O2	NO. ENGIAGIC SCITING	A " p S	L Ts										
$ $	1 6 5	6	730RPM 671.2	7.0	,03	23	4.4.	14.7	1.08	980	680										
Ş	8	6 673 7.0 03 23 4.64 14.7																			
		6 681.0 7.0.02 22 4.67 14.8																			
		6	185.4	7.0	+02	23	4.63	14.7		·											
5-6	R-6	6	687.4	7.0	.02	23	4.71	14.7		R-6	R-L										
50	1.0	8	905 RPM 864.4	9.0	.19	.37	5.65	<i>13.</i> Z	.87	1 ₁ 5	830										
5	67	8	867.4	9.0	. 18	37	5.64	B.1		0											
		8	872.4	9.0	-19	37	5.64	13.7	>												
		-8																			
2-9	R-8	8								R-8	R-5										
			Nan	nes of Custor	<i>S1C</i> ner Person	ACI anel Parti	ry <i>Test</i> icipating in	Test: /	ACK 62 J	2											
		74	wh Kuse	h		terry	Rishe	<i>Ri</i>	ACK 8-19	+)	•										
		p.	un Ma	in and s	E Sur	, Za	Ban	n a) a H.F												
		V V Ta	al Kran	Sig	mature of '	Technicia Lech	nns: Nerena	1 01	MR &	herta	ha										
			and the second se					1													

<i>x</i>			Carb	on Mass B	alance k	ield Dat	la Form	RAIL K	ond Test						
	•	•	aseline:	Location: <u>STR</u>	NEN'S Poin	<u>"T</u> Test I		1-96		*					
			odel: <u>EMB-/</u> ient:		Miles/H	lours:	I.D.#:	#:_ <u>4009</u>							
	Fuel	Specfic Gr	avity:	@:	(°F)										
	DAT		ssure:	in	ches of Me	ercury		Start Tin	ne: 8: 157	<u>AP1</u>					
OIL RESSALU	Pyr Te ^D	RPM AR	Exhaust Temp SE	P Inches of H ₂ O	%-CO	HC ppm	% CO ₂	% O ₂	NO, EÑGRACK SETTING	AMPS	VOLS				
22 751	159	375.3	10LE 289.0	1,65	01	15	1.61	19.0	1.72 10	615	228				
34 PS1	1460	2	283.6	1.7	01	15	1.51	19.0		•					
	:	2	2.83.6	1.7	01	15	1.50	19.0		· .					
		2	283.6	1.7	01	15	1.49	19.0							
९-२	R-2	2	283.4	1.7	01	15	1-51	19.0		R-2	R-2				
43 251	173.0	559 RPM 4	508.0	3.8	02	27	3.85	16.3	1.28	1300	450				
		<u> </u>	510.0	3.7	02	27	3.85	- 16.3							
		4	510.0	3.7	02	24	3.84	16.5	+						
	ı.	· 4	511.2	3.7	02	26	3.82	16.4	/						
R-4	R. 4	4	510.8	3.7	62	26	3.82	16.4			R-4				
	Hen's Of e Air	ОЕД	Nar	nes of Custor	mer Perso	<i>O'PACI</i> nnel Parti	TY C Re icipating in		ACK = (2) ACK-Z = (1) ACK-Y = (2)						
										٠					

Signature of Technicians:

`

5 1	Carbon Mass Balance Field Data Form KAHKOAG 1551												
	Company: Wis-CenTerl Location: STEVEN'S Count Test Date: 8-14-96 Test Portion: Baseline: Treated: X Exhaust Stack Diameter: & Inches												
	Engi Type	ne Make/N e of Equipn	lodel: <u>EMB-</u> nent:	16 Cylindi N/a	Miles/H	lours:	I.D.#	<u>4009</u>		•	*		
	Fuel	Specfic G	ravity:					@:	(°F)				
	Barometric Pressure: inches of Mercury Start Time:												
SSur	PyR TEOMP	RPM	Exhaust Temp ? E	P Inches of H ₂ O	%-C0	HC ppm	% CO ₂	% O ₂	NO, PACK SETTING	Amps	VOLTS		
3 51	1680	<u>719.2RP</u> 6	n 687.4	6.8	09	32	4.89	15.2	1.06	1675	585		
2		4	689.2	6.8	09	32	4.89	15.1		•.			
		4	690.8	6.8	09	3/	4.92	15.2	<				
		6	691.4	6.8	09	31	4.92	15.2					
-6	R-6	6	692.0	6.8	09	3/	4.88	1.52	,	R-6	R-L		
1	1760	<u>893.8 LIN</u> 8	868.0	9.0	25	.44	5.19	14.1	, 84	1950	690		
-		8	871.0	9.0	25	44	5.81	13.9					
		8	875.2	9.0	26	41	5,75	- 13.8					
		- 8	817.4	9.0	25	39	5.72	. 14.1					
-8	R-8	8	882.0	9.0	27	37	5.45	14.2		R-8	R-8		
	TER'S FAIR	OPEN	Nam	es of Custom	0'J ner Person	PACITY nel Partic	C Recul cipating in	Test: R R	ACK 6= ACK 8=	(9) <-			
	5. Pull's For Rendinc-												

а 1. у	Carbon Mass Balance Field Data Form Company: <u>M/15 - CENTRA</u> Location: <u>STEVEN'S POIN</u> Test Date: <u>6-19-96</u> Test Portion: Baseline: <u>X</u> Treated: <u>Exhaust Stack Diameter</u> : <u>P</u> Inches												
	Com Test	pany: <u>\//</u> Portion: B	<u>s - CENTRA</u> aseline: X	Location: <u>S</u>	EVEN 5	<u>orn</u> Test Exhaust	Date: <u>6-1</u> Stack Dian	<u>9-96</u> neter: <u>P</u>	// Inches	• .) //		
	Engi Type	ne Make/N e of Equipn	lodel: <u>EMB</u>	-16 CYL N/A	Miles/F	Iours:	I.D.#	<u>. 4009</u>					
	Fuel	Specfic G	ravity:	853				0	(°F)				
⁵ 1	0	metric Pre	ssure:	in	ches of Me	ercury		Start Tu	me: //:2.	2AM			
alss une	Temp	RPM AMD EACIC	Exhaust Temp ?E	P Inches	% CO	HC ppm	% CO ₂	% O ₂	NOT. ENG RACKSOT	Amps	V o L TS		
34 P Ş	1 ol 5 7	310 RPM	276.2	1.6	. 01	14	1.83	18.5	- 1.54	700	240		
-1	8 (375RAM 2	276.4	1.6	.01	14	1.83	18.5		R-2.			
2 276.8 1.6 .01 14 1.83 186 R-2 R-2													
R-2 R-2 2 277 1.6 .01 14 1.83 18.6													
		2	277.4	1.6	. 01	14	1.83	18.5	-				
48	1,0	4	481.4	4.0	.02	18	3.84	16.2	1.28	1325	4		
RS	0	ý	487.4	4.0	102	17	3.80		-	R4	R~		
		4	493.2	4.0	.02	. 17	3.84	16.3	,				
011	<i>n</i>	• 4	492.8	4.0	.01	17	3.83	16.3					
R-4	R-4	4	495	4.0	. 02.	17	3.81						
	MIDOLE 3 REAR Names of Customer Personnel Participating in Test: FANS ON C - PACITY BASELINE Reg tpeciet(4) RACK 2 = (7) BACK 4 = (7) RACK 4 = (7)												
1 1 1 1 4		m	ARKK	isch		Serry	RAS	SKE	i.				
		Ø	raig Fle	ndis sin	Kim	Ja k	Som	UHI	t Cryx)			
	Craig Flindes Nens La Born UHE Cryp Signature of Technicians: Paul Krams Dich Kerenal FPC Cheat Lak												

	Carbon Mass Balance Field Data Form Company: Mis- CENTRAL Location: STEVEN'S Parts Test Date: 6-19-14													
	Comp Test I	Portion: B	aseline: X	Location: <u>STe</u>	<u>ven's la</u>	Test <u>آمر</u> Exhaust	Date: <u>6 - 7</u> Stack Diam	<u>9-16</u> neter: <u>8</u> 1	nches					
		ne Make/M of Equipm	lodel: <u>EMB</u>	-16 Cy L	Miles/H	lours:	I.D.#:	4009						
	Fuel	Specfic Gr	avity:8	3				@:	(°F)					
2	' Baro	metric Pre	ssure:	ine	ches of Me	ercury		Start Tin	ne:					
L L L L S S S S S S S S S S S S S S S S	Pyro Temp	RPM	Exhaust Temp ?F	P Inches	% CO	HC ppm	% CO ₂	% O _z	NO, ENL P	Am CIC PS SeT	Vo LT S			
49	1 ⁶ 7	6	725RPM) 668.4	7.2	.10	20	4.92	14.8	1.06	⁷	400			
PS	PS 2 6 672.8 7.2 10 21 4.91 14.8													
1	S 6 672.8 1.2 10 21 9.9 19.8 R-6 R-6 R-6 R-6													
		6	678.8	7.2	.09	21	4.89	150		·				
(lob)	(R-6)	6	1.79.2	7.2	.89	21	4.92							
60	G	R	899 RPN 848.8	P	29	. 23	5.98		-84	20	700			
RS	6	8	852.6	9.4			5.93			0				
J	1	8	853.2				601			R-8	R-S			
<u>[.4</u>]	1-8	- 8		9.2		-	600			-				
		e e e e e e e e e e e e e e e e e e e	857	9,4			592	-						
			Nam	les of Custom										
	O'PACITY RACICE = (8) Names of Customer Personnel Participating in Test: MACKE = (8) MARK Kusch JEIZny KISKE													
	. :						4							
		h	aig Fhi	ales .	- *	um Im	La B	ann	- Ul	t [low	P			
	Chaig Flinkes - Kim La Barn UHI Colp Signature of Technicians: Prul Kramer Dich Revenal FK Shut John													

	-		Carb	on Mass B	alance F	ield Da	ta Form	RAILK	land Test		
	Comp Test I	Portion: B	aseline:	Location: <u>STE</u>	ed: X	<u>"[</u> Test] Exhaust :	Date: <u>81</u> Stack Dian	<u>4.96</u> neter: <u>9</u> "	Inches	• •	
	•	ne Make/M of Equipp	10del: <u>EMB-</u> nent:	11. Cylinde	er Miles/H	ours:	I.D.#	4006		•	
	Fuel	Specfic G	ravity:	33				@:	(°F)		
	DA	metric Pre	ssure:	in	iches of Me	rcury		Start Ti	ne: <u>9:45</u>	<u>RIM</u>	
OIL RESS AL	Pyr TEmp	RPM	Exhaust Temp 9F	P Inches of H ₂ O	%·C0	HC ppm	% CO ₂	% O ₂	NO ENC-RACK SETTING	AMPS	VOL
40	1 1	314.7 RP	n=zple 271	1.6	107	18	1,55	18,9	1.52	5 8 0	IG E
	173	2	270.4	1.6	02	18	1.53	19.0		•	×
		381.5	273,4	1,6	,01	17	1.46	19.0			
		2	274,0	1.6	,01	17	1,53	19,0			
R-2	R-2	2	276,2	1.6	.02	17	1146	19.0		R-2	R-3
,19	181	574,1 4	513.6	4.0	.01	.24	3,39	16.7	1.26	1100	<u>510</u>
49	1.		548.4	4:0	.01	24	3.39	16.7	7		
		4	517,Y	U.0	01	24	3.39	P/6.7	7		
	£	· y	5/1.8	3.8	01	25	3.37	16.6	-		
R-4	R.4	4	518.0	3.8	01	25	336			R-4	R-4
	tter's Of e Air	OEN	Nar	nes of Custo	mer Perso	O' PHCI nnel Part	icipating i	n Test: k	PACK = (3) L PACK-Z = (1) PACK-4 = (1)	.0W IPLE	-
		:									

472

*

.#

	Carbon Mass Balance Field Data Form RANKOBA 154 Company: Mis-CENTRAL Location: STEVEN'S JOINT Test Date: 8-14-96												
			-CENTRAL aseline:		ed:				Inches	•			
		ne Make/M of Equipm	lodel: <u>EMR-</u> nent:	IL CYLINDE	74_Miles/H	lours:	I.D.#:	4006					
	Fuel Specfic Gravity: .853 @:(°F)												
	Barometric Pressure: inches of Mercury Start Time: 10:00												
ESS44	PyR TE 6 Mp	RPM	Exhaust Temp 2E	P Inches	%-CO	HC ppm	% CO ₂	% O ₂	NO _x	AMPS 1500	4.0L 670		
	1750	736.2 RA	14 1891.L	6.8	03	28	4.57	15.8	1.04				
		6	690.6	6.8	03	28	4.58	15.7		л. Л			
		4	690.8	C.8	03	28	4.54	15.6					
ž		6	691.6	6.8	03	29	4.61	15.5					
2-6	R-4	6	693	6.8	03	28	460	15.5		R-le	R-L		
13 Sl	1820-	909 RIM 8	891.4	9.0	20	45	5.36	14,5	.80	1750	800		
51			893.2	9.0	20	44	5.42	14.4		_			
	1	-8	890.8	90	19	42	5.37	14.7		_			
		. 8	892.0	90	20	42	5.39	14.6		_			
R-8	R-8	8	897.8	90	20	44	5.41	14.	1	R-8	R-8		
	O'PACITY C. REGULAR RACK = ORE AIR Names of Customer Personnel Participating in Test: RACK 6 = 1/2 RACK 8 - 8/2												

.

÷ .

5 A. .

-

	Carbon Mass Balance Field Data Form Company: Wisc - Central Location: <u>STeven's Point</u> Test Date: <u>6-19.96</u> Test Portion: Baseline: <u>X</u> Treated: <u>Exhaust Stack Diameter: & Inches</u>												
				Treat	ed:	Exhaust	Stack Dian	neter: 8	Inches	• .			
	Engi Type	ne Make/M of Equipr	Nodel: <u>EMB</u> nent:	-16 C7 (N/A	Miles/F	Hours:	I.D.#	<u>400</u>	, ,				
	Fuel	Specfic G	ravity:	853				@:	(°F)				
DIL	Barometric Pressure: inches of Mercury * Start Time: <u>8:35 RM</u>												
Pic RESS Y	Tyro Temp	RPM AND KACK	Exhaust Temp °F	P Inches	%-C0	HC ppm	% CO ₂	% O2	LACIU -	Amps	V Z		
	180	Low= Rec= 2	242 RPM 312 RPM 262.6	1.8	,02	17	1.51	18.9		650	240		
REG	·	2	263.4	1.9	. 02	17	1.59	18.9		•			
30	Reg	2	385RPM 264.8	1.9	. 02	17	1.51	18.9					
P S	18,0	2	214.8	1.8	: 02	17	1.51	18.9	ENGINC RACIC SETTING	·	L		
32	1 6	2	266.8	1.8	102	17	1.47	19.0	1.54	1300	4		
BZ RSI	L.	-4.	572RPM 484	4.2	, 01	. 19	3.44	16.7	1.26)			
SO P	10	ý.	484.2	4.2	. 01	19	3.43	16.7					
1		Ч	483.2	4.2	. 01	19	3.3P	16.8	,				
		• 4	413.2	4.2	61	18	3.37	16.8		, i			
		4	482.8	4.2	01	18	3.35	- 16.4	>	100			
-		acest Pre		les of Custon	LACK J	TET A1 inel Parti		Test:	Baseline Rack Z=	- 5	0		
is Ce	HTera	l C 4	"Mark	Kusch	. · 	Terry	Rus	he !	lack-4=	81/2			
NIOT	~CH 2 4	= Cer	YTER SA AK FA			on	,						
	Signature of Technicians:												

	Carbon Mass Balance Field Data Form													
	Company: Wisc - CENTERL Location: <u>STEVEN'S POINT</u> Test Date: <u>6-19-96</u> Test Portion: Baseline: X Treated: Exhaust Stack Diameter: Inches Engine Make/Model: <u>FMB-16 CYC</u> Miles/Hours: I.D.#: <u>4006</u> Type of Equipment: <u>N/A</u> <u>GP-40</u>													
	Engi Type	ne Make/N of Equipt	10del: <u>FMB-</u> nent: <u> </u>	16 CYL 1/A	Miles/H 6 <i>P - Y</i>	Hours:	I.D.#:	4006						
	' Fuel	Specfic G	ravity:	853				@:	(°F)					
9.	PBaro	ometric Pre	essure:	ir	iches of Me	ercury		Start Tir	ne:	SAM				
PL Ress	TEMP	RPM	Exhaust Temp ? E	P Inches	% CO	HC ppm	% CO ₂	% O ₂	NO RACK Smare	Amps	V ₀ L T _S			
56 Pc	Ps 9 6 653.6 1.2 .03 25 4.56 15.3 1.04 7- 0													
1	5 6 655.6 7.2,03 24 4.56 15.3													
54	6 657.6 7.2,03 24 456 1.5.2													
	6 657.2 7.2 103 23 4.56 15.2													
~~~~	6 658 7.2,03 23 4.57 15.3													
lec	$[9] (8) (910 \text{ APR}) (910 \text$													
P S	P 5 8 858.4 9.6 .21 26 5.74 13.6 .85 50 0													
1		8	862.4	9.6	.21	25	5.68	13.7	7					
		- 8	864.8	9.6	.21	25	5.68	13.7	,					
		8	865.8	9.6	.21	24	5.75	13.7	7					
	0'PACITY - Rack 6 = 8 Names of Customer Personnel Participating in Test: RACK 6 Middle, And REAN FAN.ON"													
	8 Mark Kusch Jerry Kishe significant Accumulation at Pack 8,													
	Cq	- HAR	JE TIECE	off	ARBON	LAST	611							
	Some Accumulation at Care 6 Signature of Technicians: Paul Gramus Dich Revench. FPC Shoat John													
		Y	rul Kran	eu/		ich !	evend.	_ ppe	Moot	dahe	7			

			Carbo	on Mass B	alance F	ield Da	ta Form	RAILK	lond Test	T	
			CenTral 1 aseline:		ven's Point ed:	Test 1 Exhaust 1	Date: 8-1 Stack Dian	4.96 neter:1 <u>2</u> "	Inches	· .	
		ne Make/M e of Equipn	lodel: <u>EMB - 1</u> nent:	12 CYLINGE	7_ Miles/H	ours:	I.D.#	: <u>1554</u>		-	
	Fuel	Specfic Gr	ravity:	<i>1</i> 53				@:	(°F)		
		ometric Pre	ssure:	in	ches of Me	ercury		Start Tir	ne: <u>2.'30</u>	P.N.	
OIL RESS PL	PV	RPM	Exhaust Temp 2E	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O _z	NO, ENG-RACK SETTING	AMPS	Vol
42 151	1500	<u>335 BP M</u> 413.7 2	EDLC 238.0	1.7	01	15	1.44	19.0	1.61	336	231
		2	235.8	1.7	01	15	1.40	19.0		·.	
		2	228.0	1.7	01	15	1,38	19.1		·	
	÷	2	227.2	1.7	01	15	1.40	19.0			
R-2	R-2	2	225.6	1.6	01	15-	1.42	19.0		R-2	R-i
H6 PSI	153°	<u>583 E.</u> 4	482.7	. 5.0	01	.22	3.52	16.6	1.25	- 792	54
		Ч	497.2	50	01	22	3.57	16-5	-		
		4	499.6	5.0	01	22	3.48	16.2	_		
	!	· 4	502.8	5.0	01	22	3.5	1 16.5	;		
<u>R-4</u>	R.4	4	504.8	5.0	01	100				R-4	<b>R-</b> 4
	Hen's Of e Air	PEN	Nan	aes of Custor	mer Perso	O'PACI nnel Part	icipating i	n Test: k	eack = 3 eack-z = 6 eack-4 = 7	K	
		:			al-Carlotta Carlotta			-9-0 - 1917 - 19 - 19 - 19 - 19	-		بر .

. ۲₉ به

.

-

-

#.

9 e			CHED	OU ALIDO D	alance l	UCIU LA	had be in the	u biles inte	n faa Ng saag		
			CenTal aseline:	Location: <u>STE</u> Treat	VEN's Point ed: X	Test Exhaust	Date: Stack Diar	neter: <u>12</u>	, Inches		
			10del: <u><i>EMB-1</i></u> nent:		Miles/H	lours:	I.D.#	: <u>1554</u>			
	✓ Fuel	Specfic G	ravity:	853				@:	(°F)		
		metric Pre	ssure:	in	ches of M	ercury		Start Ti	me: <u>2:30</u>	PM	
SS UN	PyR TE 6 Mp	RPM	Exhaust Temp %	P Inches	%-CO	HC ppm	% CO ₂	% O ₂	NO, RACK, SEMING	AMPS 974	40L 706
59 PS1		142,1 RK	M 620.4	7.2	03	28	4.84	14.8	1.04	976	706
		4	622.0	7.2	03	28	4.86	14.7			
		4	612.8	7.2	03	28	4.88	15.0			
14		6	618.8	7.2	03	28	4.18	15:0		·	
2-6	R-4	4	419.6	7.1	03	28	4.87			R-ile	R-L
	••	8	837.9		19	38	5.55	14.0			
			HA	d To ST	rop-Co	ouldn'	T Hol	d			
	•	8									
		- 8									
7-8	R-8	8								R-8	R-8
	TER'S FAIR	OPEN	Nan	ies of Custor	O ner Person	<i>'PACIT</i> Y anel Parti	C Resu icipating i	n Test: /	RACK = RACK 6 RACK F	= 🛞	

-

~

	Carbon Mass Balance Field Data Form												
	Company: Wirc - CenTeAL Location: STEVEN'S POINT Test Date: 6-18-96 Test Portion: Baseline: X Treated: Exhaust Stack Diameter: 2 Inches												
	Engin Type	ne Make/N of Equipn	fodel: <u>EMB-17</u> nent:N/.	2 CyL	Miles/H	lours:	I.D.#	<u>1554</u>		•			
	Fuel	Specfic G	ravity: <u> </u>	353				@:	(°F)				
	Baro	metric Pre	ssure:	in	ches of Me	ercury		Start Tir	ne: 8:301	°M			
Kessync	Pyro Temp	RPM .	Exhaust Temp ?F	P Inches of H ₂ O	% CO	HC ppm	% CO ₂	% O ₂	-NO- SMOKE	Р. Г.	V L Ts		
50p SI	1500	402RPM 2	247.6	1.8	.01	14	1.51	19.0		325	ZyG		
		2	247.8	1.8	.01	14	1.50	19.0		•.			
		2	248.6	1.8	:01	14	1.50	19.0					
		2	249.6	1.8	.01	14	1.49	19.0		325	Ky .		
		2	250.0	1.8	, 01	14	1.46	19.0					
50 Psi	1/5	<u>575R</u> 4	476.8	5. Ø	. 01	.17	3.86	16.3		275	54		
1		ý	487.6	5.0	:01	17	3.87	16.2		1			
		Ý	499	5.0	. 01	18	3.83	16.2	_	1			
		•4	504.4		. 01	18	3.88	16.1					
500 Isi	1550	4	506.2	5.0	. 01	18	3.83	16.	2	775-	54		
~~~~	Names of Customer Personnel Participating in Test: RACK Z = (71/2)												
	Marh Kusch												
		/	naig Fi	indus	Kim	La	Burn	- wl	UHE (Ing			
	Craig Flindes Strin La Barn w/ UHE Copp Signature of Technicians: Paul Kramer Wich Revend w/ FPC Streat Labo												
)		14	III Vam	«/	N	sur !	1 work		11-10		-		

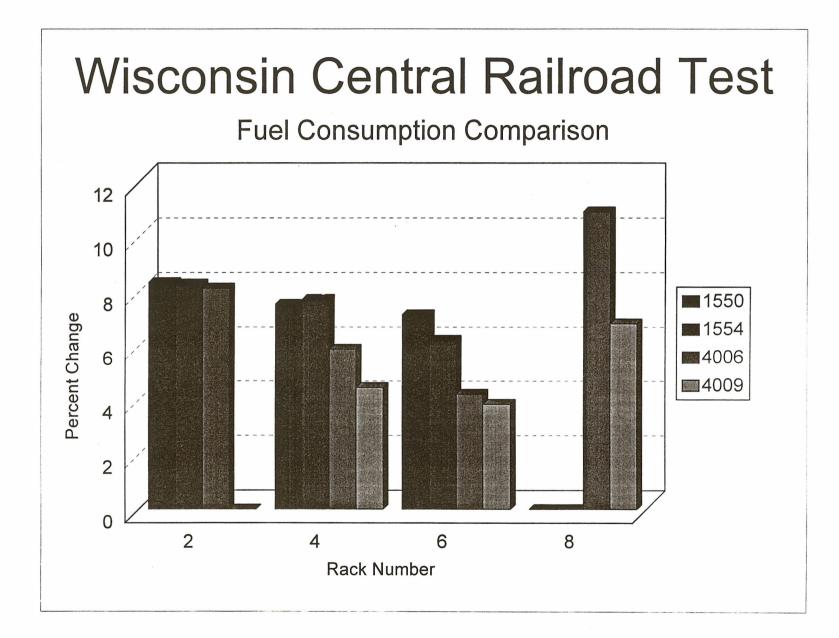
Carbon Mass Balance Field Data Form Company: Wisc CENTRAL Location: STEVEN'S FOINT Test Date: 6-19-96 Test Portion: Baseline: X Treated:_____ Exhaust Stack Diameter: __Inches Engine Make/Model: EMB-12 CYL Miles/Hours: I.D.#: 1554 Type of Equipment: ______ N/4 Fuel Specfic Gravity: _____. 853 @:_____(°F) Barometric Pressure: ______ inches of Mercury Start Time: YOL 7 Py rb BIL imps HC % CO P Inches % CO2 Exhaust % O₂ NOT Plessy Tenp of H,O Temp °F ppm : Smoken Ī₆. 7₁₅ 715RAM 1550 50 Psj 7.5 02 522 21 4.61 14.7 .03 19 5.32 14.4 644.8 7.5 lo 7.5 6.54.8 . 03 19 524 14.3 b 655.6 7.5 19 ,03 5.15 14.3 6 659.2 7.5 03 5.16 14.4 19 b ,03 642 7.5 19 5.12 14.4 ,03 7.5 19 5.10 14.4 640.1 B Mark Kusch Names of Customer Personnel Participating in Test: O'PACITY RACK 6= 9 SigNificant Buildup At. RACK 6 - Hot CARDON MASSIVE buriday AT RACK 8- Hot Carbon Craig Flinders & Him La Barn W/ UHE Cop Signature of Technicians: Paul Kramer Dich Revenal w/FPC that It

	<u>Unit No.</u>	Notch	Baseline PF	Treated PF	<u>% Chg</u>
	1554	2	62,089	67,222	8.27
	1554	4	17,014	18,325	7.71
	1554	6	11,264	11,963	6.21
Mean			-		7.40
	1550	2	65,302	70,732	8.32
	1550	4	19,387	20,846	7.53
	1550	6	13,000	13,929	7.15
Mean					7.67
	4009	2	123,591	144,902	17.24*
	4009	4	42,927	44,838	4.45
	4009	6	26,993	28,031	3.84
	4009	8	20,491	21,888	6.82
Mean					5.04
	4006	2	138,537	149,787	8.12
	4006	4	47,005	49,764	5.87
	4006	6	29,093	30,317	4.21
	4006	8	21,307	23,632	10.91+
Mean					6.07

Table 1. Comparison of Fuel Consumption/Mass Flow Rates (PFs)

Note 1: An increase in PF equates to a reduction in fuel consumption since the PF is a measure of the length of time needed to consume a unit volume of fuel. Therefore, the higher the PF, the longer the engine ran on the same quantity of fuel.

Note 2: Units 4006 and 4009 missed several fuel treatments during the engine preconditioning period. This may account for the lower fuel economy improvements when compared to the SW1500s (Units 1550 and 1554), which we fully treated during the same period.


* Statistical anomaly

+ Probable erroneous pressure reading

	<u>Unit No.</u>	Notch	Baseline No.	FPC No.	% Chg
	1.5.5.4	• 11	5.0	•	40
	1554	idle	5.0	3.0	-40
	1554	2	7.5	4.0	-47
	1554	4	8.0	7.0	-12
	1554	6	9.0 (full scale)	8.0	-11
Mean	l		7.4	5.5	-26
	1550	idle	4.0	3.0	-25
	1550	2	6.5	4.0	-38
	1550	4	8.0	6.5	-19
	1550	6	9.0 (full scale)	8.5	- 6
Mean			6.9	5.5	-20
	4009	idle	4.5	3.0	-33
	4009	2	7.0	6.0	-14
	4009	4	8.0	6.0	-25
	4009	6	8.0	7.0	-12
	4009	8	8.5	9.0	6
Mean	L		7.2	6.2	-16
	4006	idle	6.0	3.0	-50
	4006	2	5.0	4.0	-20
	4006	4	8.5	7.0	-18
	4006	6	8.0	7.5	- 6
	4006	8	9.0+ (off scale) 8.5	- 6
Mean			7.3	6.0	-19

Table 2. Comparison of Smokespot Numbers (Smoke Density)

Note: During baseline testing at Notch 8, the Bacharach Smokemeter plugged off after three pulls on Units 1550, 1554, and 4006. When testing with FPC treated fuel, the smokemeter did not plug off. Therefore, the percentage change in smoke density at these notch settings may be greater than actually measured.

